58 research outputs found

    MDM2 (transformed mouse 3T3 cell double minute 2, p53 binding protein)

    Get PDF
    Review on MDM2 (transformed mouse 3T3 cell double minute 2, p53 binding protein), with data on DNA, on the protein encoded, and where the gene is implicated

    Immunotherapy of lung cancer: An update

    Get PDF
    In Germany lung cancer is the leading cause of cancer-associated death in men. Surgery, chemotherapy and radiation may enhance survival of patients suffering from lung cancer but the enhancement is typically transient and mostly absent with advanced disease; eventually more than 90% of lung cancer patients will die of disease. New approaches to the treatment of lung cancer are urgently needed. Immunotherapy may represent one new approach with low toxicity and high specificity but implementation has been a challenge because of the poor antigenic characterization of these tumors and their ability to escape immune responses. Several different immunotherapeutic treatment strategies have been developed. This review examines the current state of development and recent advances with respect to non-specific immune stimulation, cellular immunotherapy ( specific and non-specific), therapeutic cancer vaccines and gene therapy for lung cancer. The focus is primarily placed on immunotherapeutic cancer treatments that are already in clinical trial or well progressed in preclinical studies. Although there seems to be a promising future for immunotherapy in lung cancer, presently there is not standard immunotherapy available for clinical routine

    Irinotecan, cisplatin and mitomycin in inoperable gastro-oesophageal and pancreatic cancers – a new active regimen

    Get PDF
    Irinotecan, mitomycin and cisplatin all demonstrate activity in gastro-oesophageal cancers. This novel combination was administered to outpatients with previously untreated inoperable gastro-oesophageal or pancreatic cancer, in a 28-day cycle. A total of 26 out of 31 patients with gastro-oesophageal cancer and 12 out of 14 patients with pancreatic cancer have been treated with this combination, and were evaluable for response. The overall response rates for patients with gastro-oesophageal cancer was 42%, with a median survival of 9.5 months. In patients with pancreatic cancer, the overall response rate was 42% with a median survival of 8 months. There was a statistically significant increase in survival between those patients who achieved a stable disease response and those who achieved either a partial response or complete response. The toxicity profiles for both cancers were virtually identical. There were five treatment-related deaths, and a high admission rate (42%). Thus irinotecan, mitomycin and cisplatin is a new combination with activity in inoperable upper gastro-oesophageal cancers, but with a high toxicity profile. Future developments include reducing the dose of irinotecan and number of cycles of therapy to four

    Phase i trial of axitinib combined with platinum doublets in patients with advanced non-small cell lung cancer and other solid tumours

    Get PDF
    BACKGROUND: This phase I dose-finding trial evaluated safety, efficacy and pharmacokinetics of axitinib, a potent and selective secondgeneration inhibitor of vascular endothelial growth factor receptors, combined with platinum doublets in patients with advanced non-small cell lung cancer (NSCLC) and other solid tumours. METHODS: In all, 49 patients received axitinib 5mg twice daily (b.i.d.) with paclitaxel/carboplatin or gemcitabine/cisplatin in 3-week cycles. Following determination of the maximum tolerated dose, a squamous cell NSCLC expansion cohort was enroled and received axitinib 5mg b.i.d. with paclitaxel/carboplatin. RESULTS: Two patients experienced dose-limiting toxicities: febrile neutropenia (n¼1) in the paclitaxel/carboplatin cohort and fatigue (n¼1) in the gemcitabine/cisplatin cohort. Common nonhaematologic treatment-related adverse events were hypertension (36.7%), diarrhoea (34.7%) and fatigue (28.6%). No gradeX3 haemoptysis occurred among 12 patients with squamous cell NSCLC. The objective response rate was 37.0% for patients receiving axitinib/paclitaxel/carboplatin (n¼27) and 23.8% for patients receiving axitinib/gemcitabine/cisplatin (n¼21). Pharmacokinetics of axitinib and chemotherapeutic agents were similar when administered alone or in combination. CONCLUSION: Axitinib 5mg b.i.d. may be combined with standard paclitaxel/carboplatin or gemcitabine/cisplatin regimens without evidence of overt drug–drug interactions. Both combinations demonstrated clinical efficacy and were well tolerated.This study was sponsored by Pfizer Inc. Support was provided in part by National Institutes of Health grant P30 CA006927 to the Fox Chase Cancer Center. We thank the patients who participated in this study and the physicians who referred them, as well as the study coordinators and data managers, Shelley Mayfield and Carol Martins at Pfizer Inc. for support of the study conduct, and Gamal ElSawah, Pfizer Medical Affairs, for his review of the manuscript. Medical writing support was provided by Joanna Bloom, of UBC Scientific Solutions (Southport, CT, USA) and Christine Arris at ACUMED (Tytherington, UK) and was funded by Pfizer In
    corecore