17 research outputs found

    Nos2 Inactivation Promotes the Development of Medulloblastoma in Ptch1+/− Mice by Deregulation of Gap43–Dependent Granule Cell Precursor Migration

    Get PDF
    Medulloblastoma is the most common malignant brain tumor in children. A subset of medulloblastoma originates from granule cell precursors (GCPs) of the developing cerebellum and demonstrates aberrant hedgehog signaling, typically due to inactivating mutations in the receptor PTCH1, a pathomechanism recapitulated in Ptch1+/− mice. As nitric oxide may regulate GCP proliferation and differentiation, we crossed Ptch1+/− mice with mice lacking inducible nitric oxide synthase (Nos2) to investigate a possible influence on tumorigenesis. We observed a two-fold higher medulloblastoma rate in Ptch1+/− Nos2−/− mice compared to Ptch1+/− Nos2+/+ mice. To identify the molecular mechanisms underlying this finding, we performed gene expression profiling of medulloblastomas from both genotypes, as well as normal cerebellar tissue samples of different developmental stages and genotypes. Downregulation of hedgehog target genes was observed in postnatal cerebellum from Ptch1+/+ Nos2−/− mice but not from Ptch1+/− Nos2−/− mice. The most consistent effect of Nos2 deficiency was downregulation of growth-associated protein 43 (Gap43). Functional studies in neuronal progenitor cells demonstrated nitric oxide dependence of Gap43 expression and impaired migration upon Gap43 knock-down. Both effects were confirmed in situ by immunofluorescence analyses on tissue sections of the developing cerebellum. Finally, the number of proliferating GCPs at the cerebellar periphery was decreased in Ptch1+/+ Nos2−/− mice but increased in Ptch1+/− Nos2−/− mice relative to Ptch1+/− Nos2+/+ mice. Taken together, these results indicate that Nos2 deficiency promotes medulloblastoma development in Ptch1+/− mice through retention of proliferating GCPs in the external granular layer due to reduced Gap43 expression. This study illustrates a new role of nitric oxide signaling in cerebellar development and demonstrates that the localization of pre-neoplastic cells during morphogenesis is crucial for their malignant progression

    Dietary phytochemicals and neuro-inflammaging: from mechanistic insights to translational challenges

    Full text link

    An AKT3-FOXG1-reelin network underlies defective migration in human focal malformations of cortical development

    No full text
    Focal malformations of cortical development (FMCD) account for the majority of drug-resistant pediatric epilepsy. Postzygotic somatic mutations activating the PI3K-AKT-mTOR pathway are found in a wide range of brain diseases, including FMCD. It remains unclear how a mutation in a small fraction of cells can disrupt the architecture of the entire hemisphere. We show that, within human FMCD brain, cells showing activation of this pathway were enriched for the mutation. Introducing the FMCD mutation into mouse brain resulted in electrographic seizures and impaired hemispheric architecture. Mutation-expressing neural progenitors showed reelin misexpression, which led to a non-cell autonomous migration defect in neighboring cells, due at least in part to FOXG1-mediated de-repression of reelin transcription. Treatments aimed at blocking downstream AKT signaling or inactivating reelin restored migration. These findings suggest a central AKT-FOXG1-Reelin signaling pathway in FMCD, and support pathway inhibitors as potential treatments or therapies for some forms of focal epilepsy
    corecore