5,296 research outputs found

    Star-galaxy separation by far-infrared color-color diagrams for the AKARI FIS All-Sky Survey (Bright Source Catalogue Version beta-1)

    Get PDF
    To separate stars and galaxies in the far infrared AKARI All-Sky Survey data, we have selected a sample with the complete color information available in the low extinction regions of the sky and constructed color-color plots for these data. We looked for the method to separate stars and galaxies using the color information. We performed an extensive search for the counterparts of these selected All-Sky Survey sources in the NED and SIMBAD databases. Among 5176 objects, we found 4272 galaxies, 382 other extragalactic objects, 349 Milky Way stars, 50 other Galactic objects, and 101 sources detected before in various wavelengths but of an unknown origin. 22 sources were left unidentified. Then, we checked colors of stars and galaxies in the far-infrared flux-color and color-color plots. In the resulting diagrams, stars form two clearly separated clouds. One of them is easy to be distinguished from galaxies and allows for a simple method of excluding a large part of stars using the far-infrared data. The other smaller branch, overplotting galaxies, consists of stars known to have an infrared excess, like Vega and some fainter stars discovered by IRAS or 2MASS. The color properties of these objects in any case make them very difficult to distinguish from galaxies. We conclude that the FIR color-color diagrams allow for a high-quality star-galaxy separation. With the proposed simple method we can select more that 95 % of galaxies rejecting at least 80 % of stars.Comment: 20 pages, 41 figures, "Astronomy & Astrophysics", accepted, to appear in the AKARI special issu

    Quantum Random Number Generator using Photon-Number Path Entanglement

    Full text link
    We report a novel quantum random number generator based on the photon-number-path entangled state which is prepared via two-photon quantum interference at a beam splitter. The randomness in our scheme is of truly quantum mechanical origin as it comes from the projection measurement of the entangled two-photon state. The generated bit sequences satisfy the standard randomness test

    Permanence of a delayed SIR epidemic model with density dependent birth rate

    Get PDF
    AbstractIn this paper, we consider the permanence of a modified delayed SIR epidemic model with density dependent birth rate which is proposed in [M. Song, W. Ma, Asymptotic properties of a revised SIR epidemic model with density dependent birth rate and time delay, Dynamic of Continuous, Discrete and Impulsive Systems, 13 (2006) 199–208]. It is shown that global dynamic property of the modified delayed SIR epidemic model is very similar as that of the model in [W. Ma, Y. Takeuchi, T. Hara, E. Beretta, Permanence of an SIR epidemic model with distributed time delays, Tohoku Math. J. 54 (2002) 581–591; W. Ma, M. Song, Y. Takeuchi, Global stability of an SIR epidemic model with time delay, Appl. Math. Lett. 17 (2004) 1141–1145]

    Interpretations of the NuTeV sin2θW\sin^2 \theta_W

    Full text link
    We summarize theoretical explanations of the three σ\sigma discrepancy between sin2θW\sin^2 \theta_W measured by NuTeV and predicted by the Standard Model global fit. Possible new physics explanations ({\it e.g.} an unmized ZZ') are not compelling. The discrepancy would be reduced by a positive momentum asymmetry ss^- in the strange sea; present experimental estimates of ss^- are unreliable or incomplete. Upgrading the NuTeV analysis to NLO would alleviate concerns that the discrepancy is a QCD effect.Comment: (proceedings for the NuFact'02 Workshop); reference and footnote added, following the NuTeV proceeding

    Strong and radiative decays of X(3872) as a hadronic molecule with a negative parity

    Full text link
    Properties of X(3872) are studied by regarding it as a DDDD^{\ast} hadronic molecule with JPC=2+J^{PC} = 2^{-+} in the phenomenological Lagrangian approach. We find that our model with about 97.6% isospin zero component explains the existing data nicely, for example, the ratio B(X(3872)J/ψπ+ππ0)/B(X(3872)J/ψπ+π)\mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-\pi^0)/\mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-). We predict the partial widths of the radiative decays of X(3872)γJ/ψX(3872) \to \gamma J/\psi, γψ(2S)\gamma \psi(2S) and the strong decays of X(3872)J/ψπ+πX(3872) \to J/\psi \pi^+ \pi^-, J/ψπ+ππ0J/\psi \pi^+\pi^-\pi^0 as well as X(3872)χcJπ0X(3872) \to \chi_{cJ}\pi^0. Our analysis shows that the measurement of the ratio B(X(3872)χc0π0)/B(X(3872)χc1π0)\mathcal{B}(X(3872) \to \chi_{c0}\pi^0)/\mathcal{B}(X(3872) \to \chi_{c1}\pi^0) may signal the nature of X(3872)

    Coded Tissue Superharmonic Imaging: An Analytical Study

    Get PDF
    Superharmonic imaging (SHI) benefits medical ultrasound imaging in achieving higher spatial and contrast resolution but gives poor signal-to-noise ratio (SNR) and penetration depth that require careful control on excitation power and frequency. In the present work, coded pulsed excitations (linear frequency modulated and nonlinear frequency modulated signals) are used to evaluate the superharmonic field generation and propagation (coded tissue superharmonic imaging). The evaluation includes the study of parameters such as peak side lobe level, beam width, axial level for analyzing SNR and penetration depth. The results for coded tissue SHI are reported in comparison with conventional SHI and with the performance of coded tissue harmonic imaging and fundamental ultrasound imaging

    Growing interfaces uncover universal fluctuations behind scale invariance

    Get PDF
    Stochastic motion of a point -- known as Brownian motion -- has many successful applications in science, thanks to its scale invariance and consequent universal features such as Gaussian fluctuations. In contrast, the stochastic motion of a line, though it is also scale-invariant and arises in nature as various types of interface growth, is far less understood. The two major missing ingredients are: an experiment that allows a quantitative comparison with theory and an analytic solution of the Kardar-Parisi-Zhang (KPZ) equation, a prototypical equation for describing growing interfaces. Here we solve both problems, showing unprecedented universality beyond the scaling laws. We investigate growing interfaces of liquid-crystal turbulence and find not only universal scaling, but universal distributions of interface positions. They obey the largest-eigenvalue distributions of random matrices and depend on whether the interface is curved or flat, albeit universal in each case. Our exact solution of the KPZ equation provides theoretical explanations.Comment: 5 pages, 3 figures, supplementary information available on Journal pag

    Galaxy Manifold: Characterizing and understanding galaxies with two parameters

    Full text link
    We report the discovery of a two-dimensional Galaxy Manifold within the multi-dimensional luminosity space of local galaxies. The multi-dimensional luminosity space is constructed using 11 bands that span from far ultraviolet to near-infrared for redshift < 0.1 galaxies observed with GALEX, SDSS, and UKIDSS. The two latent parameters are sufficient to express 93.2% of the variance in the galaxy sample, suggesting that this Galaxy Manifold is one of the most efficient representations of galaxies. The transformation between the observed luminosities and the manifold parameters as an analytic mapping is provided. The manifold representation provides accurate (85%) morphological classifications with a simple linear boundary, and galaxy properties can be estimated with minimal scatter (0.12 dex and 0.04 dex for star formation rate and stellar mass, respectively) by calibrating with the two-dimensional manifold location. Under the assumption that the manifold expresses the possible parameter space of galaxies, the evolution on the manifold is considered. We find that constant and exponentially decreasing star formation histories form almost orthogonal modes of evolution on the manifold. Through these simple models, we understand that the two modes are closely related to gas content, which suggests the close relationship of the manifold to gas accretion. Without assuming a star formation history, a gas-regulated model reproduces an exponentially declining star formation history with a timescale of \sim1.2 Gyrs on the manifold. Lastly, the found manifold suggests a paradigm where galaxies are characterized by their mass/scale and specific SFR, which agrees with previous studies of dimensionality reduction.Comment: Submitted to MNRAS. 15 pages and 17 figures. All comments are welcom

    The NuTeV Anomaly, Neutrino Mixing, and a Heavy Higgs Boson

    Full text link
    Recent results from the NuTeV experiment at Fermilab and the deviation of the Z invisible width, measured at LEP/SLC, from its Standard Model (SM) prediction suggest the suppression of neutrino-Z couplings. Such suppressions occur naturally in models which mix the neutrinos with heavy gauge singlet states. We postulate a universal suppression of the Z-nu-nu couplings by a factor of (1-epsilon) and perform a fit to the Z-pole and NuTeV observables with epsilon and the oblique correction parameters S and T. Compared to a fit with S and T only, inclusion of epsilon leads to a dramatic improvement in the quality of the fit. The values of S and T preferred by the fit can be obtained within the SM by a simple increase in the Higgs boson mass. However, if the W mass is also included in the fit, a non-zero U parameter becomes necessary which cannot be supplied within the SM. The preferred value of epsilon suggests that the seesaw mechanism may not be the reason why neutrinos are so light.Comment: 19 pages, REVTeX4, 8 postscript figures. Updated references. Typos correcte

    Non-Markovian Dynamics of Spin Squeezing

    Full text link
    We evaluate the spin squeezing dynamics of N independent spin-1/2 particles with exchange symmetry. Each spin interacts with its own reservoir, and the reservoirs are independently and identical. The spin squeezing parameter is analytically calculated with different kinds of decoherence. The spin squeezing property vanishes with evolution time under the Markovian decoherence. Whereas coupled to the non-Markovian decoherence channels, the spin squeezing property collapses and revives with time. As spin squeezing can be regarded as a witness of multipartite entanglement, thus our scheme shows the collapse and revival of multipartite entanglement under non-Markovian decoherence.Comment: 13 pages, 7 figure
    corecore