66 research outputs found

    Hyperechogenic renal parenchyma in potential live related kidney donors: Does it justify exclusion?

    Get PDF
    The aim of this work is to asses theimportance of ultrasonic grade I echogenicity inpotential kidney donors in the absence of urinaryabnormality and with perfect renal function.Thirty four living related kidney donors with thisabnormality were included, age range between 23-48years. Ten matched healthy donors were studied ascontrols.All cases were thoroughly investigated includingmeasuring GFR by isotopic scan and estimation ofrenal reserve by dopamine and aminoacid infusion.Renal biopsy was done for 17 cases of theechogenicity group and 8 controls. Our resultsshowed that the renal reserve was comparable in bothgroups. Glomerular changes were found in 41% ofapparently normal donors and only one case ofcontrols.Conclusion: Grade I echogenicity may be sign ofunrecognised kidney disease. Renal biopsy ismandatory when such related donors are the onlyavailable

    Human ochratoxicosis and nephropathy in Egypt: A preliminary study

    Get PDF
    This preliminary study was designed todelineate the extent of the problem of ochratoxicosis and its relation to renal diseases mounting to endstage renal disease (ESRD) or urothelial tumors inEgypt. It comprised 71 patient with renal diseases ofdifferent presentations. They were divided into fivegroups: (group I - no.=11) patients with (ESRD)under conservati ve treatment, (group 2 - no.=15)ESRD on regular hemodialysis, (group3 - no.= 15)renal allograft recipients, (group 4 - no.=15) patientswith nephrotic syndrome and (group 5 - no.=15)patients with urothelial tumors. In addition, twocontrol groups were included; potential relateddonors for renal transplantation (group 6 - no.=15)and healthy controls with negative family history ofrenal disease (group 7 - no.=25).All groups were subjected to clinical, laboratory,radiological and histopathological evaluation of renalstatus together with determination of ochratoxin Alevel in blood, urine and in biopsy specimens ofpatients with urothelial tumors.High ochratoxin blood levels were found in allpatients with ESRD (groups 1 & 2) (p<0.01). Higherblood levels were detected in the group onconservative treatment (group 1) in comparison tocontrols possibly due to ochratoxin A clearance bydialysis. Ochratoxin A was detected in blood andurine of renal transplant recipients (group3) (p<0.01)and especially higher levels were found in patientswith nephrotic syndrome (group 4) (p<0.001). Patients with urothelial tumor (group 5), had higher levels of ochratoxin in blood, urine and tissue biopsy specimens (p<0.01).These results support the conclusion that ochratoxin-A could be related to the genesis of renal disease leading to ESRD or causing urothelial cancer. We recommend more detailed study for ochratoxicosis & renal disease in Egypt

    Long term hemodialysis aggravates lipolytic activity reduction and very low density, low density lipoproteins composition in chronic renal failure patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dyslipidemia, particularly hypertriglyceridemia is common in uremia, and represents an independent risk factor for atherosclerosis.</p> <p>Methods</p> <p>To investigate the effects of hemodialysis (HD) duration on very low density lipoprotein (VLDL) and low density lipoprotein (LDL) compositions and lipopolytic activities, 20 patients on 5 to 7 years hemodialysis were followed-up during 9 years. Blood samples were drawn at T0 (beginning of the study), T1 (3 years after initiating study), T2 (6 years after initiating study) and T3 (9 years after initiating study). T0 was taken as reference.</p> <p>Results</p> <p>Triacylglycerols (TG) values were correlated with HD duration (r = 0.70, P < 0.05). An increase of total cholesterol was noted at T2 and T3. Lowered activity was observed for lipoprotein lipase (LPL) (-44%) at T3 and hepatic lipase (HL) (-29%) at T1, (-64%) at T2 and (-73%) at T3. Inverse relationships were found between HD duration and LPL activity (r = -0.63, P < 0.05), and HL activity (r = -0.71, P < 0.01). At T1, T2 and T3, high VLDL-amounts and VLDL-TG and decreased VLDL-phospholipids values were noted. Increased LDL-cholesteryl esters values were noted at T1 and T2 and in LDL-unesterified cholesterol at T2 and T3.</p> <p>Conclusion</p> <p>Despite hemodialysis duration, VLDL-LDL metabolism alterations are aggravated submitting patients to a greater risk of atherosclerosis.</p

    Global Impact of the COVID-19 Pandemic on Cerebral Venous Thrombosis and Mortality

    Get PDF
    Background and purpose: Recent studies suggested an increased incidence of cerebral venous thrombosis (CVT) during the coronavirus disease 2019 (COVID-19) pandemic. We evaluated the volume of CVT hospitalization and in-hospital mortality during the 1st year of the COVID-19 pandemic compared to the preceding year. Methods: We conducted a cross-sectional retrospective study of 171 stroke centers from 49 countries. We recorded COVID-19 admission volumes, CVT hospitalization, and CVT in-hospital mortality from January 1, 2019, to May 31, 2021. CVT diagnoses were identified by International Classification of Disease-10 (ICD-10) codes or stroke databases. We additionally sought to compare the same metrics in the first 5 months of 2021 compared to the corresponding months in 2019 and 2020 (ClinicalTrials.gov Identifier: NCT04934020). Results: There were 2,313 CVT admissions across the 1-year pre-pandemic (2019) and pandemic year (2020); no differences in CVT volume or CVT mortality were observed. During the first 5 months of 2021, there was an increase in CVT volumes compared to 2019 (27.5%; 95% confidence interval [CI], 24.2 to 32.0; P&lt;0.0001) and 2020 (41.4%; 95% CI, 37.0 to 46.0; P&lt;0.0001). A COVID-19 diagnosis was present in 7.6% (132/1,738) of CVT hospitalizations. CVT was present in 0.04% (103/292,080) of COVID-19 hospitalizations. During the first pandemic year, CVT mortality was higher in patients who were COVID positive compared to COVID negative patients (8/53 [15.0%] vs. 41/910 [4.5%], P=0.004). There was an increase in CVT mortality during the first 5 months of pandemic years 2020 and 2021 compared to the first 5 months of the pre-pandemic year 2019 (2019 vs. 2020: 2.26% vs. 4.74%, P=0.05; 2019 vs. 2021: 2.26% vs. 4.99%, P=0.03). In the first 5 months of 2021, there were 26 cases of vaccine-induced immune thrombotic thrombocytopenia (VITT), resulting in six deaths. Conclusions: During the 1st year of the COVID-19 pandemic, CVT hospitalization volume and CVT in-hospital mortality did not change compared to the prior year. COVID-19 diagnosis was associated with higher CVT in-hospital mortality. During the first 5 months of 2021, there was an increase in CVT hospitalization volume and increase in CVT-related mortality, partially attributable to VITT

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Global Impact of the COVID-19 Pandemic on Cerebral Venous Thrombosis and Mortality.

    Get PDF
    BACKGROUND AND PURPOSE: Recent studies suggested an increased incidence of cerebral venous thrombosis (CVT) during the coronavirus disease 2019 (COVID-19) pandemic. We evaluated the volume of CVT hospitalization and in-hospital mortality during the 1st year of the COVID-19 pandemic compared to the preceding year. METHODS: We conducted a cross-sectional retrospective study of 171 stroke centers from 49 countries. We recorded COVID-19 admission volumes, CVT hospitalization, and CVT in-hospital mortality from January 1, 2019, to May 31, 2021. CVT diagnoses were identified by International Classification of Disease-10 (ICD-10) codes or stroke databases. We additionally sought to compare the same metrics in the first 5 months of 2021 compared to the corresponding months in 2019 and 2020 (ClinicalTrials.gov Identifier: NCT04934020). RESULTS: There were 2,313 CVT admissions across the 1-year pre-pandemic (2019) and pandemic year (2020); no differences in CVT volume or CVT mortality were observed. During the first 5 months of 2021, there was an increase in CVT volumes compared to 2019 (27.5%; 95% confidence interval [CI], 24.2 to 32.0; P<0.0001) and 2020 (41.4%; 95% CI, 37.0 to 46.0; P<0.0001). A COVID-19 diagnosis was present in 7.6% (132/1,738) of CVT hospitalizations. CVT was present in 0.04% (103/292,080) of COVID-19 hospitalizations. During the first pandemic year, CVT mortality was higher in patients who were COVID positive compared to COVID negative patients (8/53 [15.0%] vs. 41/910 [4.5%], P=0.004). There was an increase in CVT mortality during the first 5 months of pandemic years 2020 and 2021 compared to the first 5 months of the pre-pandemic year 2019 (2019 vs. 2020: 2.26% vs. 4.74%, P=0.05; 2019 vs. 2021: 2.26% vs. 4.99%, P=0.03). In the first 5 months of 2021, there were 26 cases of vaccine-induced immune thrombotic thrombocytopenia (VITT), resulting in six deaths. CONCLUSIONS: During the 1st year of the COVID-19 pandemic, CVT hospitalization volume and CVT in-hospital mortality did not change compared to the prior year. COVID-19 diagnosis was associated with higher CVT in-hospital mortality. During the first 5 months of 2021, there was an increase in CVT hospitalization volume and increase in CVT-related mortality, partially attributable to VITT

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    • 

    corecore