108 research outputs found

    Cylindrical shells under uniform bending in the framework of Reference Resistance Design

    Get PDF
    The resistance of cylindrical shells and tubes under uniform bending has received significant research attention in recent times, with a number of major projects aiming to characterise their strength through both experimental and numerical studies. However, the investigated cross-section slenderness ranges have mostly addressed low radius to thickness ratios where buckling occurs after significant plasticity and the influence of geometric imperfections is relatively minor. The behaviour under uniform bending of thinner imperfection-sensitive cylinders that fail by elastic buckling was largely omitted, as was the influence of finite length effects. The value of such resistance models that are only useful for thicker cylinders is therefore somewhat limited. This paper offers the most comprehensive known characterisation of the buckling and collapse resistance of isotropic cylindrical shells and tubes under uniform bending. Expressed within the modern framework of Reference Resistance Design (RRD), it holistically incorporates the effects of material plasticity, geometric nonlinearity and sensitivity to realistic and damaging weld depression imperfections. The characterisation was made possible by the authors' recently-developed novel methodology for mass automation of nonlinear shell buckling finite element analyses. A modification of the RRD formulation is proposed which facilitates its application to systems of low slenderness, and offers a compact algebraic characterisation of all potential imperfection amplitudes for this common shell structural condition. A reliability analysis is also performed

    Integrated nonlinear structural simulation of composite buildings in fire

    Get PDF
    The collapse of several tall composite buildings over the last two decades has shown that the performance of tall, composite and complex buildings in fire is a necessary design consideration that ought to go beyond simple code compliance. To this end, several advancements in the field of numerical simulation of both the fire and the thermomechanical response of structures have been made. In isolation, the practical benefit of these advancements is limited, and their true potential is only unlocked when the results of those numerical simulations are integrated. This paper starts by showcasing recent developments in the thermal and thermomechanical analysis of structures using OpenSees. Integration of these developments into a unified simulation environment combining fire simulation, heat transfer, and mechanical analysis is then introduced. Finally, a demonstration example based on the large compartment Cardington test is used to showcase the necessity and efficiency of the developed simulation environment for thermomechanical simulation of composite structures in fire

    Ethyl 1-[(2-chloro-1,3-thia­zol-5-yl)methyl]-5-methyl-1H-1,2,3-triazole-4-carboxylate

    Get PDF
    In the title compound, C10H11ClN4O2S, the triazole ring carries methyl and ethoxy­carbonyl groups and is bound via a methyl­ene bridge to a chloro­thia­zole unit. There is also evidence for significant electron delocalization in the triazolyl system. Intra- and inter­molecular C—H⋯O hydrogen bonds together with strong π–π stacking inter­actions [centroid–centroid distance 3.620 (1) Å] stabilize the structure

    Terpenoid biotransformations by Mucor species

    Get PDF
    Terpenoids are natural products of great interest due to their widespread use in agrochemicals, drugs, fragrances, flavouring and pigments. Biocatalysts are increasingly being used in the search for new derivatives with improved properties especially to obtain structurally novel leads for new drugs which are difficult to obtain using conventional organic chemical methods. This review, covering up to the end of 2012, reports on the application of Mucor species as catalysts in terpenoid biotransformation to obtain new drug targets, enhance pharmacological activity or decrease the unwanted effects of starting material

    Identification and characterization of antibacterial compound(s) of cockroaches (Periplaneta americana)

    Get PDF
    Infectious diseases remain a significant threat to human health, contributing to more than 17 million deaths, annually. With the worsening trends of drug resistance, there is a need for newer and more powerful antimicrobial agents. We hypothesized that animals living in polluted environments are potential source of antimicrobials. Under polluted milieus, organisms such as cockroaches encounter different types of microbes, including superbugs. Such creatures survive the onslaught of superbugs and are able to ward off disease by producing antimicrobial substances. Here, we characterized antibacterial properties in extracts of various body organs of cockroaches (Periplaneta americana) and showed potent antibacterial activity in crude brain extract against methicillin-resistant Staphylococcus aureus and neuropathogenic E. coli K1. The size-exclusion spin columns revealed that the active compound(s) are less than 10 kDa in molecular mass. Using cytotoxicity assays, it was observed that pre-treatment of bacteria with lysates inhibited bacteria-mediated host cell cytotoxicity. Using spectra obtained with LC-MS on Agilent 1290 infinity liquid chromatograph, coupled with an Agilent 6460 triple quadruple mass spectrometer, tissues lysates were analyzed. Among hundreds of compounds, only a few homologous compounds were identified that contained isoquinoline group, chromene derivatives, thiazine groups, imidazoles, pyrrole containing analogs, sulfonamides, furanones, flavanones, and known to possess broad-spectrum antimicrobial properties, and possess anti-inflammatory, anti-tumour, and analgesic properties. Further identification, characterization and functional studies using individual compounds can act as a breakthrough in developing novel therapeutics against various pathogens including superbugs

    The Collapse of World Trade Center 7: Revisited

    No full text
    The catastrophic events of September 11, 2001, stand out as a major motivation for research on improving the understanding of structural behaviour in fire. These events included the first complete collapse of a tall steel framed structure solely due to fire. World Trade Center 7 (WTC7) was a 47-storey office building within the WTC complex that collapsed due to a fire initiated by debris from the collapse of WTC1. In the following years, detailed investigations were carried out by expert teams to pinpoint the cause of the progressive failure of WTC7. Each of the expert teams analysed the fire and structure and made varying conclusions with regards to the mechanisms responsible for initiating and propagating the collapse of the building. This paper revisits the collapse of WTC7 and its investigation, and then explores the hypothesis that a potential hydrocarbon fire may have compromised the large transfer structure within the mechanical space of the building. This is done via two OpenSees finite element models. The first model explores the thermomechanical response of the mechanical floors to a potential diesel fire, and the second investigates the response of the structure to a failure caused by that fire. The outcome of the analyses shows that it is feasible that a mechanical room fire could lead to a failure in the transfer structure, which would then result in the loss of support to at least two columns within the building core. The failure of these columns may unbrace the eastern-most core columns and precipitate in the failure of the structure as observed on 9/11

    The collapse of world trade center 7 : revisited

    No full text
    202204 bchyNot applicableRGCEarly release12 month

    A review on structural fire tests of two-way composite floors

    No full text
    202407 bcwhAccepted ManuscriptRGCPublishedGreen (AAM
    corecore