7,210 research outputs found

    Free GP care and mental health. ESRI Research Bulletin 202022 September 2020.

    Get PDF
    This paper examines the impact of a policy that extended free GP care to those over 70 on their mental health. It was found that whilst stress levels among this group decreased by 6 per cent, there was no evidence for significant changes in quality of life, life satisfaction and depression

    A terahertz polarization insensitive dual band metamaterial absorber

    Get PDF
    Metamaterial absorbers have attracted considerable attention for applications in the terahertz range. In this Letter, we report the design, fabrication, and characterization of a terahertz dual band metamaterial absorber that shows two distinct absorption peaks with high absorption. By manipulating the periodic patterned structures as well as the dielectric layer thickness of the metal–dielectric–metal structure, significantly high absorption can be obtained at specific resonance frequencies. Finite-difference time-domain modeling is used to design the structure of the absorber. The fabricated devices have been characterized using a Fourier transform IR spectrometer. The experimental results show two distinct absorption peaks at 2.7 and 5.2 THz, which are in good agreement with the simulation. The absorption magnitudes at 2.7 and 5.2 THz are 0.68 and 0.74, respectively

    Factors that support Indigenous involvement in multi-actor environmental stewardship

    Get PDF
    Regional, multi-actor environmental collaborations bring together diverse parties to achieve environmental protection and stewardship outcomes. Involving a range of participants helps involve alternative forms of knowledge, expertise, and perspectives; it may also present greater challenges in reaching agreements, particularly when both Indigenous and non-Indigenous parties are involved. The authors conduct a cross-case study of 39 regional partnerships involving Indigenous nations from the Great Lakes basin of North America with the aim of determining the factors that enable Indigenous partners to remain engaged in multi-actor collaborations. Six characteristics influenced Indigenous nations’ willingness to remain engaged: respect for Indigenous knowledges, control of knowledge mobilization, intergenerational involvement, self-determination, continuous cross-cultural education, and early involvement. Being attentive of these factors can help partnerships achieve their environmental goals by keeping important partners at the table

    Wolbachia and DNA barcoding insects: patterns, potential and problems

    Get PDF
    Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein – wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor – for which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region

    The Origin and Evolution of Lyα Blobs in Cosmological Galaxy Formation Simulations

    Get PDF
    High-redshift Lyα blobs (LABs) are an enigmatic class of objects that have been the subject of numerous observational and theoretical investigations. It is of particular interest to determine the dominant power sources for their luminosity, as direct emission from H ii regions, cooling gas, and fluorescence due to the presence of active galactic nuclei (AGNs) can all contribute significantly. In this paper, we present the first theoretical model to consider all of these physical processes in an attempt to develop a model for the origin of LABs. This is achieved by combining a series of high-resolution cosmological zoom-in simulations with ionization and Lyα radiative transfer models. We find that massive galaxies display a range of Lyα luminosities and spatial extents (which strongly depend on the limiting surface brightness used) over the course of their lives, though regularly exhibit luminosities and sizes consistent with observed LABs. The model LABs are typically powered from a combination of recombination in star-forming galaxies, as well as cooling emission from gas associated with accretion. When AGNs are included in the model, the fluorescence caused by active galactic nucleus-driven ionization can be a significant contributor to the total Lyα luminosity as well. Within our modeled mass range, there are no obvious threshold physical properties that predict the appearance of LABs, and only weak correlations of the luminosity with the physical properties of the host galaxy. This is because the emergent Lyα luminosity from a system is a complex function of the gas temperature, ionization state, and Lyα escape fraction

    Quantum teleportation on a photonic chip

    Full text link
    Quantum teleportation is a fundamental concept in quantum physics which now finds important applications at the heart of quantum technology including quantum relays, quantum repeaters and linear optics quantum computing (LOQC). Photonic implementations have largely focussed on achieving long distance teleportation due to its suitability for decoherence-free communication. Teleportation also plays a vital role in the scalability of photonic quantum computing, for which large linear optical networks will likely require an integrated architecture. Here we report the first demonstration of quantum teleportation in which all key parts - entanglement preparation, Bell-state analysis and quantum state tomography - are performed on a reconfigurable integrated photonic chip. We also show that a novel element-wise characterisation method is critical to mitigate component errors, a key technique which will become increasingly important as integrated circuits reach higher complexities necessary for quantum enhanced operation.Comment: Originally submitted version - refer to online journal for accepted manuscript; Nature Photonics (2014

    The Single-Particle Structure of Neutron-Rich Nuclei of Astrophysical Interest at the Ornl Hribf

    Full text link
    The rapid nuetron-capture process (r process) produces roughly half of the elements heavier than iron. The path and abundances produced are uncertain, however, because of the lack of nuclear strucure information on important neutron-rich nuclei. We are studying nuclei on or near the r-process path via single-nucleon transfer reactions on neutron-rich radioactive beams at ORNL's Holifield Radioactive Ion Beam Facility (HRIBF). Owing to the difficulties in studying these reactions in inverse kinematics, a variety of experimental approaches are being developed. We present the experimental methods and initial results.Comment: Proceedings of the Third International Conference on Fission and Properties of Neutron-Rich Nucle

    Sharpening the predictions of big-bang nucleosynthesis

    Get PDF
    Motivated by the recent measurement of the primeval abundance of deuterium, we re-examine the nuclear inputs to big-bang nucleosynthesis (BBN). Using Monte-Carlo realization of the nuclear cross-section data to directly estimate the theoretical uncertainties for the yields of D, 3-He and 7-Li, we show that previous estimates were a factor of 2 too large. We sharpen the BBN determination of the baryon density based upon deuterium, rho_B = (3.6 +/- 0.4) * 10^{-31} g/cm^3 (Omega_B h^2 = 0.019 +/- 0.0024), which leads to a predicted 4-He abundance, Y_P = 0.246 +/- 0.0014 and a stringent limit to the equivalent number of light neutrino species: N_nu < 3.20 (all at 95% cl). The predicted 7-Li abundance, 7-Li/H = (3.5 + 1.1 - 0.9) * 10^{-10}, is higher than that observed in pop II stars, (1.7 +/- 0.3) * 10^{-10} (both, 95% cl). We identify key reactions and the energies where further work is needed.Comment: 5 pages, 4 figures (epsfig), REVTeX; submitted to Phys. Rev. Let
    • …
    corecore