161 research outputs found

    Why High-Performance Modelling and Simulation for Big Data Applications Matters

    Get PDF
    Modelling and Simulation (M&S) offer adequate abstractions to manage the complexity of analysing big data in scientific and engineering domains. Unfortunately, big data problems are often not easily amenable to efficient and effective use of High Performance Computing (HPC) facilities and technologies. Furthermore, M&S communities typically lack the detailed expertise required to exploit the full potential of HPC solutions while HPC specialists may not be fully aware of specific modelling and simulation requirements and applications. The COST Action IC1406 High-Performance Modelling and Simulation for Big Data Applications has created a strategic framework to foster interaction between M&S experts from various application domains on the one hand and HPC experts on the other hand to develop effective solutions for big data applications. One of the tangible outcomes of the COST Action is a collection of case studies from various computing domains. Each case study brought together both HPC and M&S experts, giving witness of the effective cross-pollination facilitated by the COST Action. In this introductory article we argue why joining forces between M&S and HPC communities is both timely in the big data era and crucial for success in many application domains. Moreover, we provide an overview on the state of the art in the various research areas concerned

    Computation of metallic nanofluid natural convection in a two-dimensional solar enclosure with radiative heat transfer, aspect ratio and volume fraction effects

    Get PDF
    As a model of nanofluid direct absorber solar collectors (nano-DASCs), the present article describes recent numerical simulations of steady-state nanofluid natural convection in a two-dimensional enclosure. Incompressible laminar Newtonian viscous flow is considered with radiative heat transfer. The ANSYS FLUENT finite volume code (version 19.1) is employed. The enclosure has two adiabatic walls, one hot (solar receiving) and one colder wall. The Tiwari-Das volume fraction nanofluid model is used and three different nanoparticles are studied (Copper (Cu), Silver (Ag) and Titanium Oxide (TiO2)) with water as the base fluid. The solar radiative heat transfer is simulated with the P1 flux and Rosseland diffusion models. The influence of geometrical aspect ratio and solid volume fraction for nanofluids is also studied and a wider range is considered than in other studies. Mesh-independence tests are conducted. Validation with published studies from the literature is included for the copperwater nanofluid case. The P1 model is shown to more accurately predict the actual influence of solar radiative flux on thermal fluid behaviour compared with Rosseland radiative model. With increasing Rayleigh number (natural convection i.e. buoyancy effect), significant modification in the thermal flow characteristics is induced with emergence of a dual structure to the circulation. With increasing aspect ratio (wider base relative to height of the solar collector geometry) there is a greater thermal convection pattern around the whole geometry, higher temperatures and the elimination of the cold upper zone associated with lower aspect ratio. Titanium Oxide nano-particles achieve slightly higher Nusselt number at the hot wall compared with Silver nano-particles. Thermal performance can be optimized with careful selection of aspect ratio and nano-particles and this is very beneficial to solar collector designers
    corecore