25 research outputs found

    Distance in audio for VR: Constraints and opportunities

    Get PDF
    Spatial audio is enjoying a surge in attention in both scene and object based paradigms, due to the trend for, and accessibility of, immersive experience. This has been enabled through convergence in computing enhancements, component size reduction, and associated price reductions. For the first time, applications such as virtual reality (VR) are technologies for the consumer. Audio for VR is captured to provide a counterpart to the video or animated image, and can be rendered to combine elements of physical and psychoacoustic modelling, as well as artistic design. Given that distance is an inherent property of spatial audio, that it can augment sound's efficacy in cueing user attention (a problem which practitioners are seeking to solve), and that conventional film sound practices have intentionally exploited its use, the absence of research on its implementation and effects in immersive environments is notable. This paper sets out the case for its importance, from a perspective of research and practice. It focuses on cinematic VR, whose challenges for spatialized audio are clear, and at times stretches beyond the restrictions specific to distance in audio for VR, into more general audio constraints

    On 4-dimensional hypercomplex algebras in adaptive signal processing

    No full text
    The degree of diffusion of hypercomplex algebras in adaptive and non-adaptive filtering research topics is growing faster and faster. The debate today concerns the usefulness and the benefits of representing multidimensional systems by means of these complicated mathematical structures and the criterions of choice between one algebra or another. This paper proposes a simple comparison between two isodimensional algebras (quaternions and tessarines) and shows by simulations how different choices may determine the system performance. Some general information about both algebras is also supplied
    corecore