3,420 research outputs found
A Reanalysis of the Hydrodynamic Theory of Fluid, Polar-Ordered Flocks
I reanalyze the hydrodynamic theory of fluid, polar ordered flocks. I find
new linear terms in the hydrodynamic equations which slightly modify the
anisotropy, but not the scaling, of the damping of sound modes. I also find
that the nonlinearities allowed {\it in equilibrium} do not stabilize long
ranged order in spatial dimensions ; in accord with the Mermin-Wagner
theorem. Nonequilibrium nonlinearities {\it do} stabilize long ranged order in
, as argued by earlier work. Some of these were missed by earlier work; it
is unclear whether or not they change the scaling exponents in .Comment: 6 pages, no figures. arXiv admin note: text overlap with
arXiv:0909.195
Breakdown of Hydrodynamic Transport Theory in the Ordered Phase of Helimagnets
It is shown that strong fluctuations preclude a hydrodynamic description of
transport phenomena in helimagnets, such as MnSi, at T>0. This breakdown of
hydrodynamics is analogous to the one in chiral liquid crystals. Mode-mode
coupling effects lead to infinite renormalizations of various transport
coefficients, and the actual macroscopic description is nonlocal. At T=0 these
effects are weakened due to the fluctuation-dissipation theorem, and the
renormalizations remain finite. Observable consequences of these results, as
manifested in the neutron scattering cross-section, are discussedComment: 4pp., 1 eps figur
Signatures of pairing mechanisms and order parameters in ferromagnetic superconductors
Two predictions are made for properties of the ferromagnetic superconductors
discovered recently. The first one is that spin-triplet, p-wave pairing in such
materials will give the magnons a mass inversely proportional to the square of
the magnetization. The second one is based on a specific mechanism for p-wave
pairing, and predicts that the observed broad anomaly in the specific heat of
URhGe will be resolved into a split transition with increasing sample quality.
These predictions will help discriminate between different possible mechanisms
for ferromagnetic superconductivity.Comment: 4 pp., 1 ps fi
Interactive effects of elevated CO <inf>2</inf> and drought on nocturnal water fluxes in Eucalyptus saligna
Nocturnal water flux has been observed in trees under a variety of environmental conditions and can be a significant contributor to diel canopy water flux. Elevated atmospheric CO 2 (elevated [CO 2]) can have an important effect on day-time plant water fluxes, but it is not known whether it also affects nocturnal water fluxes. We examined the effects of elevated [CO 2] on nocturnal water flux of field-grown Eucalyptus saligna trees using sap flux through the tree stem expressed on a sapwood area (J s) and leaf area (E t) basis. After 19 months growth under well-watered conditions, drought was imposed by withholding water for 5 months in the summer, ending with a rain event that restored soil moisture. Reductions in J s and E t were observed during the severe drought period in the dry treatment under elevated [CO 2], but not during moderate- and post-drought periods. Elevated [CO 2] affected night-time sap flux density which included the stem recharge period, called 'total night flux' (19:00 to 05:00, J s,r), but not during the post-recharge period, which primarily consisted of canopy transpiration (23:00 to 05:00, J s,c). Elevated [CO 2] wet (EW) trees exhibited higher J s,r than ambient [CO 2] wet trees (AW) indicating greater water flux in elevated [CO 2] under well-watered conditions. However, under drought conditions, elevated [CO 2] dry (ED) trees exhibited significantly lower J s,r than ambient [CO 2] dry trees (AD), indicating less water flux during stem recharge under elevated [CO 2]. J s,c did not differ between ambient and elevated [CO 2]. Vapour pressure deficit (D) was clearly the major influence on night-time sap flux. D was positively correlated with J s,r and had its greatest impact on J s,r at high D in ambient [CO 2]. Our results suggest that elevated [CO 2] may reduce night-time water flux in E. saligna when soil water content is low and D is high. While elevated [CO 2] affected J s,r, it did not affect day-time water flux in wet soil, suggesting that the responses of J s,r to environmental factors cannot be directly inferred from day-time patterns. Changes in J s,r are likely to influence pre-dawn leaf water potential, and plant responses to water stress. Nocturnal fluxes are clearly important for predicting effects of climate change on forest physiology and hydrology. © 2011 The Author. Published by Oxford University Press. A ll rights reserved
Trigonometric Parallaxes of Massive Star Forming Regions: IV. G35.20-0.74 and G35.20-1.74
We report trigonometric parallaxes for the high-mass star forming regions
G35.20-0.74 and G35.20-1.74, corresponding to distances of 2.19 (+0.24 -0.20)
kpc and 3.27 (+0.56 -0.42) kpc, respectively. The distances to both sources are
close to their near kinematic distances and place them in the
Carina-Sagittarius spiral arm. Combining the distances and proper motions with
observed radial velocities gives the locations and full space motions of the
star forming regions. Assuming a standard model of the Galaxy, G35.20-0.74 and
G35.20-1.74 have peculiar motions of ~13 km/s and ~16 km/s counter to Galactic
rotation and ~9 km/s toward the North Galactic Pole.Comment: 16 pages, 8 figure
Rooting depth explains [CO <inf>2</inf>]× drought interaction in Eucalyptus saligna
Elevated atmospheric [CO 2] (eCa) often decreases stomatal conductance, which may delay the start of drought, as well as alleviate the effect of dry soil on plant water use and carbon uptake. We studied the interaction between drought and eCa in a whole-tree chamber experiment with Eucalyptus saligna. Trees were grown for 18 months in their Ca treatments before a 4-month dry-down. Trees grown in eCa were smaller than those grown in ambient Ca (aCa) due to an early growth setback that was maintained throughout the duration of the experiment. Pre-dawn leaf water potentials were not different between Ca treatments, but were lower in the drought treatment than the irrigated control. Counter to expectations, the drought treatment caused a larger reduction in canopy-average transpiration rates for trees in the eCa treatment compared with aCa. Total tree transpiration over the dry-down was positively correlated with the decrease in soil water storage, measured in the top 1.5 m, over the drying cycle; however, we could not close the water budget especially for the larger trees, suggesting soil water uptake below 1.5 m depth. Using neutron probe soil water measurements, we estimated fractional water uptake to a depth of 4.5 m and found that larger trees were able to extract more water from deep soil layers. These results highlight the interaction between rooting depth and response of tree water use to drought. The responses of tree water use to eCa involve interactions between tree size, root distribution and soil moisture availability that may override the expected direct effects of eCa. It is essential that these interactions be considered when interpreting experimental results. © 2011 The Author. Published by Oxford University Press. A ll rights reserved
Theory of helimagnons in itinerant quantum systems
The nature and effects of the Goldstone mode in the ordered phase of helical
or chiral itinerant magnets such as MnSi are investigated theoretically. It is
shown that the Goldstone mode, or helimagnon, is a propagating mode with a
highly anisotropic dispersion relation, in analogy to the Goldstone mode in
chiral liquid crystals. Starting from a microscopic theory, a comprehensive
effective theory is developed that allows for an explicit description of the
helically ordered phase, including the helimagnons, for both classical and
quantum helimagnets. The directly observable dynamical spin susceptibility,
which reflects the properties of the helimagnon, is calculated.Comment: 20 pp., 1 eps fig; corrects various typos and incorrect prefactors in
Phys Rev B versio
The Supercooling of a Nematic Liquid Crystal
We investigate the supercooling of a nematic liquid crystal using fluctuating
non-linear hydrodynamic equations. The Martin-Siggia-Rose formalism is used to
calculate renormalized transport coefficients to one-loop order. Similar
theories for isotropic liquids have shown substantial increases of the
viscosities as the liquid is supercooled or compressed due to feedback from the
density fluctuations which are freezing. We find similar results here for the
longitudinal and various shear viscosities of the nematic. However, the two
viscosities associated with the nematic director motion do not grow in any
dramatic way; i.e.\ there is no apparent freezing of the director modes within
this hydrodynamic formalism. Instead a glassy state of the nematic may arise
from a ``random anisotropy" coupling of the director to the frozen density.Comment: Late
Inspiratory muscle training reduces blood lactate concentration during volitional hyperpnoea
Although reduced blood lactate concentrations ([lac−]B) have been observed during whole-body exercise following inspiratory muscle training (IMT), it remains unknown whether the inspiratory muscles are the source of at least part of this reduction. To investigate this, we tested the hypothesis that IMT would attenuate the increase in [lac−]B caused by mimicking, at rest, the breathing pattern observed during high-intensity exercise. Twenty-two physically active males were matched for 85% maximal exercise minute ventilation (V˙Emax) and divided equally into an IMT or a control group. Prior to and following a 6 week intervention, participants performed 10 min of volitional hyperpnoea at the breathing pattern commensurate with 85% V˙Emax
Conductivity and quasinormal modes in holographic theories
We show that in field theories with a holographic dual the retarded Green's
function of a conserved current can be represented as a convergent sum over the
quasinormal modes. We find that the zero-frequency conductivity is related to
the sum over quasinormal modes and their high-frequency asymptotics via a sum
rule. We derive the asymptotics of the quasinormal mode frequencies and their
residues using the phase-integral (WKB) approach and provide analytic insight
into the existing numerical observations concerning the asymptotic behavior of
the spectral densities.Comment: 24 pages, 3 figure
- …
