22 research outputs found

    Surface roughness and hardness of a composite resin: influence of finishing and polishing and immersion methods

    No full text
    This study evaluated the finishing and polishing effect on the surface roughness and hardness of the Filtek Supreme XT, in fluoride solutions. Specimens were prepared (n = 140) with half of the samples finished and polished with Super-Snap® disks. The experimental groups were divided according to the presence or absence of finishing and polishing and immersion solutions (artificial saliva, sodium fluoride solution at 0.05% - manipulated, Fluordent Reach, Oral B, Fluorgard). The specimens remained immersed in artificial saliva for 24 hours and were then subjected to initial analysis (baseline) of surface roughness and Vickers microhardness. Next, they were immersed in different fluoride solutions for 1 min/day, for 60 days. Afterwards, a new surface roughness and microhardness reading was conducted. The data were submitted to a two-way ANOVA and Tukey's test (5% significance level). For the comparison of mean roughness and hardness at baseline and after 60 days, the paired Student t test was used. The results showed that the surface roughness and microhardness of the Filtek Supreme XT were influenced by the finishing and polishing procedure, independently of the immersion methods

    Microleakage of glass ionomer formulations after erbium:yttrium-aluminium-garnet laser preparation.

    No full text
    The aim of this study was to investigate the microleakage in class V cavities restored with four conventionally setting glass ionomers (CGIs) and one resin-modified glass ionomer (RMGI) following erbium:yttrium-aluminium-garnet (Er:YAG) laser or conventional preparation. Four hundred class V cavities were assigned to four groups: A and B were prepared by an Er:YAG laser; C and D were conventionally prepared. In groups B and D, the surface was additionally conditioned with Ketac conditioner. Each group was divided into five subgroups according to the glass ionomer cement (GIC) used: groups 1 (Ketac Fil), 2 (Ketac Molar), 3 (Ionofil Molar), 4 (Ionofil Molar Quick) and 5 (Photac Fil Quick). After thermocycling, a 2% methylene blue solution was used as dye. Scanning electron microscope (SEM) photographs were taken to show the conditioner's effect. Complete marginal sealing could not be reached. PhotacFil showed less microleakage than the conventionally setting glass ionomer cements (CGICs) investigated. Conditioning laser-prepared cavities did not negatively influence microleakage results except for Ionofil Molar Quick

    Effect of Different Pretreatment Methods on Dentin Bond Strength of a One-step Self-etch Adhesive

    No full text
    corecore