43 research outputs found

    Minimising Immunohistochemical False Negative ER Classification Using a Complementary 23 Gene Expression Signature of ER Status

    Get PDF
    BACKGROUND: Expression of the oestrogen receptor (ER) in breast cancer predicts benefit from endocrine therapy. Minimising the frequency of false negative ER status classification is essential to identify all patients with ER positive breast cancers who should be offered endocrine therapies in order to improve clinical outcome. In routine oncological practice ER status is determined by semi-quantitative methods such as immunohistochemistry (IHC) or other immunoassays in which the ER expression level is compared to an empirical threshold. The clinical relevance of gene expression-based ER subtypes as compared to IHC-based determination has not been systematically evaluated. Here we attempt to reduce the frequency of false negative ER status classification using two gene expression approaches and compare these methods to IHC based ER status in terms of predictive and prognostic concordance with clinical outcome. METHODOLOGY/PRINCIPAL FINDINGS: Firstly, ER status was discriminated by fitting the bimodal expression of ESR1 to a mixed Gaussian model. The discriminative power of ESR1 suggested bimodal expression as an efficient way to stratify breast cancer; therefore we identified a set of genes whose expression was both strongly bimodal, mimicking ESR expression status, and highly expressed in breast epithelial cell lines, to derive a 23-gene ER expression signature-based classifier. We assessed our classifiers in seven published breast cancer cohorts by comparing the gene expression-based ER status to IHC-based ER status as a predictor of clinical outcome in both untreated and tamoxifen treated cohorts. In untreated breast cancer cohorts, the 23 gene signature-based ER status provided significantly improved prognostic power compared to IHC-based ER status (P = 0.006). In tamoxifen-treated cohorts, the 23 gene ER expression signature predicted clinical outcome (HR = 2.20, P = 0.00035). These complementary ER signature-based strategies estimated that between 15.1% and 21.8% patients of IHC-based negative ER status would be classified with ER positive breast cancer. CONCLUSION/SIGNIFICANCE: Expression-based ER status classification may complement IHC to minimise false negative ER status classification and optimise patient stratification for endocrine therapies

    PrognoScan: a new database for meta-analysis of the prognostic value of genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In cancer research, the association between a gene and clinical outcome suggests the underlying etiology of the disease and consequently can motivate further studies. The recent availability of published cancer microarray datasets with clinical annotation provides the opportunity for linking gene expression to prognosis. However, the data are not easy to access and analyze without an effective analysis platform.</p> <p>Description</p> <p>To take advantage of public resources in full, a database named "PrognoScan" has been developed. This is 1) a large collection of publicly available cancer microarray datasets with clinical annotation, as well as 2) a tool for assessing the biological relationship between gene expression and prognosis. PrognoScan employs the minimum <it>P</it>-value approach for grouping patients for survival analysis that finds the optimal cutpoint in continuous gene expression measurement without prior biological knowledge or assumption and, as a result, enables systematic meta-analysis of multiple datasets.</p> <p>Conclusion</p> <p>PrognoScan provides a powerful platform for evaluating potential tumor markers and therapeutic targets and would accelerate cancer research. The database is publicly accessible at <url>http://gibk21.bse.kyutech.ac.jp/PrognoScan/index.html</url>.</p

    Impact of errors in spot size and spot position in robustly optimized pencil beam scanning proton‐based stereotactic body radiation therapy (SBRT) lung plans

    No full text
    PURPOSE: The purpose of the current study was threefold: (a) investigate the impact of the variations (errors) in spot sizes in robustly optimized pencil beam scanning (PBS) proton‐based stereotactic body radiation therapy (SBRT) lung plans, (b) evaluate the impact of spot sizes and position errors simultaneously, and (c) assess the overall effect of spot size and position errors occurring simultaneously in conjunction with either setup or range errors. METHODS: In this retrospective study, computed tomography (CT) data set of five lung patients was selected. Treatment plans were regenerated for a total dose of 5000 cGy(RBE) in 5 fractions using a single‐field optimization (SFO) technique. Monte Carlo was used for the plan optimization and final dose calculations. Nominal plans were normalized such that 99% of the clinical target volume (CTV) received the prescription dose. The analysis was divided into three groups. Group 1: The increasing and decreasing spot sizes were evaluated for ±10%, ±15%, and ±20% errors. Group 2: Errors in spot size and spot positions were evaluated simultaneously (spot size: ±10%; spot position: ±1 and ±2 mm). Group 3: Simulated plans from Group 2 were evaluated for the setup (±5 mm) and range (±3.5%) errors. RESULTS: Group 1: For the spot size errors of ±10%, the average reduction in D(99%) for −10% and +10% errors was 0.7% and 1.1%, respectively. For −15% and +15% spot size errors, the average reduction in D(99%) was 1.4% and 1.9%, respectively. The average reduction in D(99%) was 2.1% for −20% error and 2.8% for +20% error. The hot spot evaluation showed that, for the same magnitude of error, the decreasing spot sizes resulted in a positive difference (hotter plan) when compared with the increasing spot sizes. Group 2: For a 10% increase in spot size in conjunction with a −1 mm (+1 mm) shift in spot position, the average reduction in D(99%) was 1.5% (1.8%). For a 10% decrease in spot size in conjunction with a −1 mm (+1 mm) shift in spot position, the reduction in D(99%) was 0.8% (0.9%). For the spot size errors of ±10% and spot position errors of ±2 mm, the average reduction in D(99%) was 2.4%. Group 3: Based on the results from 160 plans (4 plans for spot size [±10%] and position [±1 mm] errors × 8 scenarios × 5 patients), the average D(99%) was 4748 cGy(RBE) with the average reduction of 5.0%. The isocentric shift in the superior–inferior direction yielded the least homogenous dose distributions inside the target volume. CONCLUSION: The increasing spot sizes resulted in decreased target coverage and dose homogeneity. Similarly, the decreasing spot sizes led to a loss of target coverage, overdosage, and degradation of dose homogeneity. The addition of spot size and position errors to plan robustness parameters (setup and range uncertainties) increased the target coverage loss and decreased the dose homogeneity

    MUC1-induced alterations in a lipid metabolic gene network predict response of human breast cancers to tamoxifen treatment

    No full text
    The mucin 1 (MUC1) oncoprotein is aberrantly overexpressed in human breast cancers. Although MUC1 modulates the activity of estrogen receptor α (ER), there is no information regarding the effects of MUC1 on global gene expression patterns and the potential role of MUC1-induced genes in predicting outcome for breast cancer patients. We have developed an experimental model of MUC1-induced transformation that has identified the activation of genes involved in cholesterol and fatty acid metabolism. A 38-gene set of experimentally derived MUC1-induced genes associated with lipid metabolism was applied to the analysis of ER+ breast cancer patients treated with tamoxifen. The results obtained from 2 independent databases demonstrate that patients overexpressing MUC1 and the lipid metabolic pathways are at significantly higher risk for death and recurrence/distant metastasis. By contrast, these genes were not predictive in untreated patients. Furthermore, a positive correlation was found between expression of the 38-gene set and the ER signaling pathway. These findings indicate that (i) MUC1 regulates cholesterol and fatty acid metabolism, and (ii) activation of these pathways in ER+ breast cancers predicts failure to tamoxifen treatment
    corecore