268 research outputs found

    Redundant and Specific Roles of the ARGONAUTE Proteins AGO1 and ZLL in Development and Small RNA-Directed Gene Silencing

    Get PDF
    The Arabidopsis ARGONAUTE1 (AGO1) and ZWILLE/PINHEAD/AGO10 (ZLL) proteins act in the miRNA and siRNA pathways and are essential for multiple processes in development. Here, we analyze what determines common and specific function of both proteins. Analysis of ago1 mutants with partially compromised AGO1 activity revealed that loss of ZLL function re-establishes both siRNA and miRNA pathways for a subset of AGO1 target genes. Loss of ZLL function in ago1 mutants led to increased AGO1 protein levels, whereas AGO1 mRNA levels were unchanged, implicating ZLL as a negative regulator of AGO1 at the protein level. Since ZLL, unlike AGO1, is not subjected to small RNA-mediated repression itself, this cross regulation has the potential to adjust RNA silencing activity independent of feedback dynamics. Although AGO1 is expressed in a broader pattern than ZLL, expression of AGO1 from the ZLL promoter restored transgene PTGS and most developmental defects of ago1, whereas ZLL rescued only a few AGO1 functions when expressed from the AGO1 promoter, suggesting that the specific functions of AGO1 and ZLL are mainly determined by their protein sequence. Protein domain swapping experiments revealed that the PAZ domain, which in AGO1 is involved in binding small RNAs, is interchangeable between both proteins, suggesting that this common small RNA-binding domain contributes to redundant functions. By contrast, the conserved MID and PIWI domains, which are involved in 5β€²-end small RNA selectivity and mRNA cleavage, and the non-conserved N-terminal domain, to which no function has been assigned, provide specificity to AGO1 and ZLL protein function

    A role for the Dicer helicase domain in the processing of thermodynamically unstable hairpin RNAs

    Get PDF
    In humans a single species of the RNAseIII enzyme Dicer processes both microRNA precursors into miRNAs and long double-stranded RNAs into small interfering RNAs (siRNAs). An interesting but poorly understood domain of the mammalian Dicer protein is the N-terminal helicase-like domain that possesses a signature DExH motif. Cummins et al. created a human Dicer mutant cell line by inserting an AAV targeting cassette into the helicase domain of both Dicer alleles in HCT116 cells generating an in-frame 43-amino-acid insertion immediately adjacent to the DExH box. This insertion creates a Dicer mutant protein with defects in the processing of most, but not all, endogenous pre-miRNAs into mature miRNA. Using both biochemical and computational approaches, we provide evidence that the Dicer helicase mutant is sensitive to the thermodynamic properties of the stems in microRNAs and short-hairpin RNAs, with thermodynamically unstable stems resulting in poor processing and a reduction in the levels of functional mi/siRNAs. Paradoxically, this mutant exhibits enhanced processing efficiency and concomitant RNA interference when thermodynamically stable, long-hairpin RNAs are used. These results suggest an important function for the Dicer helicase domain in the processing of thermodynamically unstable hairpin structures

    Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline

    Get PDF
    The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline

    A Novel RNA Transcript with Antiapoptotic Function Is Silenced in Fragile X Syndrome

    Get PDF
    Several genome-wide transcriptomics efforts have shown that a large percentage of the mammalian genome is transcribed into RNAs, however, only a small percentage (1–2%) of these RNAs is translated into proteins. Currently there is an intense interest in characterizing the function of the different classes of noncoding RNAs and their relevance to human disease. Using genomic approaches we discovered FMR4, a primate-specific noncoding RNA transcript (2.4 kb) that resides upstream and likely shares a bidirectional promoter with FMR1. FMR4 is a product of RNA polymerase II and has a similar half-life to FMR1. The CGG expansion in the 5β€² UTR of FMR1 appears to affect transcription in both directions as we found FMR4, similar to FMR1, to be silenced in fragile X patients and up-regulated in premutation carriers. Knockdown of FMR4 by several siRNAs did not affect FMR1 expression, nor vice versa, suggesting that FMR4 is not a direct regulatory transcript for FMR1. However, FMR4 markedly affected human cell proliferation in vitro; siRNAs knockdown of FMR4 resulted in alterations in the cell cycle and increased apoptosis, while the overexpression of FMR4 caused an increase in cell proliferation. Collectively, our results demonstrate an antiapoptotic function of FMR4 and provide evidence that a well-studied genomic locus can show unexpected functional complexity. It cannot be excluded that altered FMR4 expression might contribute to aspects of the clinical presentation of fragile X syndrome and/or related disorders

    Inducible Transgenic Rat Model for Diabetes Mellitus Based on shRNA-Mediated Gene Knockdown

    Get PDF
    The rat is an important animal model in biomedical research, but gene targeting technology is not established for this species. Therefore, we aimed to produce transgenic knockdown rats using shRNA technology and pronuclear microinjection. To this purpose, we employed a tetracycline-inducible shRNA expression system targeting the insulin receptor (IR). Doxycycline (DOX) treatment of the resulting transgenic rats led to a dose-dependent and reversible increase in blood glucose caused by ubiquitous inhibition of IR expression and signalling. We could neither detect an interferon response nor disturbances in microRNA processing after DOX treatment excluding toxic effects of shRNA expression. Low dose DOX treatment induced a chronic state of diabetes mellitus. In conclusion, we have developed a technology which allows the specific, inducible, and reversible suppression of any gene of interest in the rat. Our first transgenic rat line generated with this method represents an inducible model for diabetes mellitus

    Testing for Differentially-Expressed MicroRNAs with Errors-in-Variables Nonparametric Regression

    Get PDF
    MicroRNA is a set of small RNA molecules mediating gene expression at post-transcriptional/translational levels. Most of well-established high throughput discovery platforms, such as microarray, real time quantitative PCR, and sequencing, have been adapted to study microRNA in various human diseases. The total number of microRNAs in humans is approximately 1,800, which challenges some analytical methodologies requiring a large number of entries. Unlike messenger RNA, the majority of microRNA (60%) maintains relatively low abundance in the cells. When analyzed using microarray, the signals of these low-expressed microRNAs are influenced by other non-specific signals including the background noise. It is crucial to distinguish the true microRNA signals from measurement errors in microRNA array data analysis. In this study, we propose a novel measurement error model-based normalization method and differentially-expressed microRNA detection method for microRNA profiling data acquired from locked nucleic acids (LNA) microRNA array. Compared with some existing methods, the proposed method significantly improves the detection among low-expressed microRNAs when assessed by quantitative real-time PCR assay

    Alternative initiation and splicing in dicer gene expression in human breast cells

    Get PDF
    INTRODUCTION: Dicer is a ribonuclease that mediates RNA interference both at the transcriptional and the post-transcriptional levels. Human dicer gene expression is regulated in different tissues. Dicer is responsible for the synthesis of microRNAs and short temporal (st)RNAs that regulate the expression of many genes. Thus, understanding the control of the expression of the dicer gene is essential for the appreciation of double-stranded (ds)RNA-mediated pathways of gene expression. Human dicer mRNA has many upstream open reading frames (uORFs) at the 5'-leader sequences (the nucleotide sequence between the 5'-end and the start codon of the major ORF), and we studied whether these elements at the 5'-leader sequences regulate the expression of the dicer gene. METHOD: We determined the 5'-leader sequences of the dicer mRNAs in human breast cells by 5'-RACE and S1-nuclease protection analysis. We have analyzed the functions of the 5'-leader variants by reporter gene expression in vitro and in vivo. RESULTS: We found that the dicer transcripts in human breast cells vary in the sequence of their 5'-leader sequences, and that alternative promoter selection along with alternative splicing of the 5'-terminal exons apparently generate these variations. The breast cell has at least two predominant forms of dicer mRNAs, one of which has an additional 110 nucleotides at the 5'-end. Sequence comparison revealed that the first 80 nucleotides of these mRNA isoforms are encoded by a new exon located approximately 16 kb upstream of the reported start site. There are 30 extra nucleotides added to the previously reported exon 1. The human breast cells studied predominantly express two 5'-leader variants of dicer mRNAs, one with the exons 2 and 3 (long form) and the other without them (short form). By reporter gene expression analysis we found that the exon 2 and 3 sequences at the 5'-leader sequences are greatly inhibitory for the translation of the mRNA into protein. CONCLUSION: Dicer gene expression in human breast cells is regulated by alternative promoter selection to alter the length and composition of the 5'-leader sequence of its mRNA. Furthermore, alternative splicing of its exon 2 and 3 sequences of their pre-mRNA creates a more translationally competent mRNA in these cells

    Deep Sequencing of Human Nuclear and Cytoplasmic Small RNAs Reveals an Unexpectedly Complex Subcellular Distribution of miRNAs and tRNA 3β€² Trailers

    Get PDF
    MicroRNAs (miRNAs) are ∼22-nt small non-coding regulatory RNAs that have generally been considered to regulate gene expression at the post-transcriptional level in the cytoplasm. However, recent studies have reported that some miRNAs localize to and function in the nucleus.To determine the number of miRNAs localized to the nucleus, we systematically investigated the subcellular distribution of small RNAs (sRNAs) by independent deep sequencing sequenced of the nuclear and cytoplasmic pools of 18- to 30-nucleotide sRNAs from human cells. We identified 339 nuclear and 324 cytoplasmic known miRNAs, 300 of which overlap, suggesting that the majority of miRNAs are imported into the nucleus. With the exception of a few miRNAs evidently enriched in the nuclear pool, such as the mir-29b, the ratio of miRNA abundances in the nuclear fraction versus in the cytoplasmic fraction vary to some extent. Moreover, our results revealed that a large number of tRNA 3β€²trailers are exported from the nucleus and accumulate in the cytoplasm. These tRNA 3β€² trailers accumulate in a variety of cell types, implying that the biogenesis of tRNA 3β€² trailers is conserved and that they have a potential functional role in vertebrate cells.Our results provide the first comprehensive view of the subcellular distribution of diverse sRNAs and new insights into the roles of miRNAs and tRNA 3β€² trailers in the cell
    • …
    corecore