6,542 research outputs found

    Phase equilibria and solidification of Mg-rich Al-Mg-Si alloys

    Get PDF
    The solidification and solid-state phase equilibria of four Al-Mg-Si alloys containing 30-70%Mg and 0.5-3.5%Si, selected on the basis of an isothermal section of the Al-Mg-Si system calculated at 300 °C, have been investigated. Solidification paths of Mg-rich Al-Mg-Si alloys finish on ternary eutectics and the temperatures of two of these eutectic reactions, i.e. L↔(Al)+β+ Mg2Si and L↔(Mg)+γ+ Mg2Si, have been determined to be at ~ 448 °C and ~ 436 °C respectively by DTA. The characteristic temperatures recorded on the DTA curves are analysed and a linear relationship is found between the peak temperature and the square root of the scanning rate

    Overview of the experimental tests in prototype

    Get PDF
    Experimental tests in prototype are necessary to understand the dynamic behaviour of the machine during different operating points. Hydraulic phenomena as well as its effect on the structure need to be studied in o rder to avoid instabilities during operation and to extend the life - time of the different components. For this purpose, a complete experimental study of a large Francis turbine prototype has been performed installing several sensors along the machine. Pres sure sensors were installed in the penstock, spiral case, runner and draft tube, strain gauges were installed in the runner, vibration sensors were used in the stationary parts and different electrical and operational parameters were also measured. All the se signals were acquired simultaneously for different operating points of the turbine.Postprint (published version

    Detection of hydraulic phenomena in francis turbines with different sensors

    Get PDF
    Nowadays, hydropower is demanded to provide flexibility and fast response into the electrical grid in order to compensate the non-constant electricity generation of other renewable sources. Hydraulic turbines are therefore demanded to work under o -design conditions more frequently, where di erent complex hydraulic phenomena appear, a ecting the machine stability as well as reducing the useful life of its components. Hence, it is desirable to detect in real-time these hydraulic phenomena to assess the operation of the machine. In this paper, a large medium-head Francis turbine was selected for this purpose. This prototype is instrumented with several sensors such as accelerometers, proximity probes, strain gauges, pressure sensors and a microphone. Results presented in this paper permit knowing which hydraulic phenomenon is detected with every sensor and which signal analysis technique is necessary to use. With this information, monitoring systems can be optimized with the most convenient sensors, locations and signal analysis techniquesPostprint (published version

    Experimental measurements of the natural frequencies and mode shapes of rotating disk-blades-disk assemblies from the stationary frame

    Get PDF
    Determining the natural frequencies and mode shapes of rotating turbomachinery components from both rotating and stationary reference frames is of paramount importance to avoid resonance problems that could affect the normal operation of the machine, or even cause critical damages in these components. Due to their similarity to real engineering cases, this topic has been experimentally analyzed in the past for disk-shaft assemblies and rotor disk-blades assemblies (bladed-disk or blisk). The same topic is less analyzed for disk-blades-disk assemblies, although such configurations are widely used in centrifugal closed impellers of compressors, hydraulic pumps, pump-turbines, and runners of high head Francis turbines. In this paper, experimental measurements, varying the rotating speed of a disk-blade-disk assembly and exciting the first natural frequencies of the rotating frame, have been performed. The rotating structure is excited and measured by means of PZT patches from the rotating frame and with a Laser Doppler Vibrometer (LDV). In order to interpret the experimental results obtained from the stationary frame, a method to decompose the diametrical mode shapes of the structure in simple diametrical components (which define the diametrical mode shapes of a simple disk) has been proposed. It is concluded that the resonant frequencies detected with a stationary sensor correspond to the ones predicted with the decomposition method. Finally, a means to obtain equivalent results with numerical simulation methods is shown.Postprint (published version

    Sensor-based optimized control of the full load instability in large hydraulic turbines

    Get PDF
    Hydropower plants are of paramount importance for the integration of intermittent renewable energy sources in the power grid. In order to match the energy generated and consumed, Large hydraulic turbines have to work under off-design conditions, which may lead to dangerous unstable operating points involving the hydraulic, mechanical and electrical system. Under these conditions, the stability of the grid and the safety of the power plant itself can be compromised. For many Francis Turbines one of these critical points, that usually limits the maximum output power, is the full load instability. Therefore, these machines usually work far away from this unstable point, reducing the effective operating range of the unit. In order to extend the operating range of the machine, working closer to this point with a reasonable safety margin, it is of paramount importance to monitor and to control relevant parameters of the unit, which have to be obtained with an accurate sensor acquisition strategy. Within the framework of a large EU project, field tests in a large Francis Turbine located in Canada (rated power of 444 MW) have been performed. Many different sensors were used to monitor several working parameters of the unit for all its operating range. Particularly for these tests, more than 80 signals, including ten type of different sensors and several operating signals that define the operating point of the unit, were simultaneously acquired. The present study, focuses on the optimization of the acquisition strategy, which includes type, number, location, acquisition frequency of the sensors and corresponding signal analysis to detect the full load instability and to prevent the unit from reaching this point. A systematic approach to determine this strategy has been followed. It has been found that some indicators obtained with different types of sensors are linearly correlated with the oscillating power. The optimized strategy has been determined based on the correlation characteristics (linearity, sensitivity and reactivity), the simplicity of the installation and the acquisition frequency necessary. Finally, an economic and easy implementable protection system based on the resulting optimized acquisition strategy is proposed. This system, which can be used in a generic Francis turbine with a similar full load instability, permits one to extend the operating range of the unit by working close to the instability with a reasonable safety margin.Postprint (published version

    Influence of the boundary conditions on the natural frequencies of a Francis turbine

    Get PDF
    Natural frequencies estimation of Francis turbines is of paramount importance in the stage of design in order to avoid vibration and resonance problems especially during transient events. Francis turbine runners are submerged in water and confined with small axial and radial gaps which considerably decrease their natural frequencies in comparison to the same structure in the air. Acoustic-structural FSI simulations have been used to evaluate the influence of these gaps. This model considers an entire prototype of a Francis turbine, including generator, shaft, runner and surrounding water. The radial gap between the runner and the static parts has been changed from the real configuration (about 0.04% the runner diameter) to 1% of the runner diameter to evaluate its influence on the machine natural frequencies. Mode-shapes and natural frequencies of the whole machine are discussed for all the boundary conditions testedPostprint (published version

    Implications of free Shiga toxin-converting bacteriophages occurring outside bacteria for the evolution and the detection of Shiga toxin-producing Escherichia coli

    Get PDF
    In this review we highlight recent work that has increased our understanding of the distribution of Shiga toxin-converting phages that can be detected as free phage particles, independently of Shiga toxin-producing bacteria (STEC). Stx phages are a quite diverse group of temperate phages that can be found in their prophage state inserted within the STEC chromosome, but can also be found as phages released from the cell after activation of their lytic cycle. They have been detected in extraintestinal environments such as water polluted with feces from humans or animals, food samples or even in stool samples of healthy individuals. The high persistence of phages to several inactivation conditions makes them suitable candidates for the successful mobilization of stx genes, possibly resulting in the genes reaching a new bacterial genomic background by means of transduction, where ultimately they may be expressed, leading to Stx production. Besides the obvious fact that Stx phages circulating between bacteria can be, and probably are, involved in the emergence of new STEC strains, we review here other possible ways in which free Stx phages could interfere with the detection of STEC in a given sample by current laboratory methods and how to avoid such interference

    A Socioeconomic Well-Being Index

    Get PDF
    An annual well-being index constructed from thirteen socioeconomic factors is proposed in order to dynamically measure the mood of the US citizenry. Econometric models are fitted to the log-returns of the index in order to quantify its tail risk and perform option pricing and risk budgeting. By providing a statistically sound assessment of socioeconomic content, the index is consistent with rational finance theory, enabling the construction and valuation of insurance-type financial instruments to serve as contracts written against it. Endogenously, the VXO volatility measure of the stock market appears to be the greatest contributor to tail risk. Exogenously, "stress-testing" the index against the politically important factors of trade imbalance and legal immigration, quantify the systemic risk. For probability levels in the range of 5% to 10%, values of trade below these thresholds are associated with larger downward movements of the index than for immigration at the same level. The main intent of the index is to provide early-warning for negative changes in the mood of citizens, thus alerting policy makers and private agents to potential future market downturns

    Condition monitoring of a prototype turbine. Description of the system and main results

    Get PDF
    The fast change in new renewable energy is affecting directly the required operating range of hydropower plants. According to the present demand of electricity, it is necessary to generate different levels of power. Because of its ease to regulate and its huge storage capacity of energy, hydropower is the unique energy source that can adapt to the demand. Today, the required operating range of turbine units is expected to extend from part load to overload. These extreme operations points can cause several pressure pulsations, cavitation and vibrations in different parts of the machine. To determine the effects on the machine, vibration measurements are necessary in actual machines. Vibrations can be used for machinery protection and to identify problems in the machine (diagnosis). In this paper, some results obtained in a hydropower plant are presented. The variation of global levels and vibratory signatures has been analysed as function as gross head, transducer location and operating points.Postprint (published version

    Towards Full Automated Drive in Urban Environments: A Demonstration in GoMentum Station, California

    Full text link
    Each year, millions of motor vehicle traffic accidents all over the world cause a large number of fatalities, injuries and significant material loss. Automated Driving (AD) has potential to drastically reduce such accidents. In this work, we focus on the technical challenges that arise from AD in urban environments. We present the overall architecture of an AD system and describe in detail the perception and planning modules. The AD system, built on a modified Acura RLX, was demonstrated in a course in GoMentum Station in California. We demonstrated autonomous handling of 4 scenarios: traffic lights, cross-traffic at intersections, construction zones and pedestrians. The AD vehicle displayed safe behavior and performed consistently in repeated demonstrations with slight variations in conditions. Overall, we completed 44 runs, encompassing 110km of automated driving with only 3 cases where the driver intervened the control of the vehicle, mostly due to error in GPS positioning. Our demonstration showed that robust and consistent behavior in urban scenarios is possible, yet more investigation is necessary for full scale roll-out on public roads.Comment: Accepted to Intelligent Vehicles Conference (IV 2017
    • …
    corecore