28 research outputs found
Provably secure and efficient audio compression based on compressive sensing
The advancement of systems with the capacity to compress audio signals and simultaneously secure is a highly attractive research subject. This is because of the need to enhance storage usage and speed up the transmission of data, as well as securing the transmission of sensitive signals over limited and insecure communication channels. Thus, many researchers have studied and produced different systems, either to compress or encrypt audio data using different algorithms and methods, all of which suffer from certain issues including high time consumption or complex calculations. This paper proposes a compressing sensing-based system that compresses audio signals and simultaneously provides an encryption system. The audio signal is segmented into small matrices of samples and then multiplied by a non-square sensing matrix generated by a Gaussian random generator. The reconstruction process is carried out by solving a linear system using the pseudoinverse of Moore-Penrose. The statistical analysis results obtaining from implementing different types and sizes of audio signals prove that the proposed system succeeds in compressing the audio signals with a ratio reaching 28% of real size and reconstructing the signal with a correlation metric between 0.98 and 0.99. It also scores very good results in the normalized mean square error (MSE), peak signal-to-noise ratio metrics (PSNR), and the structural similarity index (SSIM), as well as giving the signal a high level of security
Lightweight, Secure, Similar-Document Retrieval over Encrypted Data
Applications for document similarity detection are widespread in diverse communities, including institutions and corporations. However, currently available detection systems fail to take into account the private nature of material or documents that have been outsourced to remote servers. None of the existing solutions can be described as lightweight techniques that are compatible with lightweight client implementation, and this deficiency can limit the effectiveness of these systems. For instance, the discovery of similarity between two conferences or journals must maintain the privacy of the submitted papers in a lightweight manner to ensure that the security and application requirements for limited-resource devices are fulfilled. This paper considers the problem of lightweight similarity detection between document sets while preserving the privacy of the material. The proposed solution permits documents to be compared without disclosing the content to untrusted servers. The fingerprint set for each document is determined in an efficient manner, also developing an inverted index that uses the whole set of fingerprints. Before being uploaded to the untrusted server, this index is secured by the Paillier cryptosystem. This study develops a secure, yet efficient method for scalable encrypted document comparison. To evaluate the computational performance of this method, this paper carries out several comparative assessments against other major approaches
Lightweight, Secure, Similar-Document Retrieval over Encrypted Data
Applications for document similarity detection are widespread in diverse communities, including institutions and corporations. However, currently available detection systems fail to take into account the private nature of material or documents that have been outsourced to remote servers. None of the existing solutions can be described as lightweight techniques that are compatible with lightweight client implementation, and this deficiency can limit the effectiveness of these systems. For instance, the discovery of similarity between two conferences or journals must maintain the privacy of the submitted papers in a lightweight manner to ensure that the security and application requirements for limited-resource devices are fulfilled. This paper considers the problem of lightweight similarity detection between document sets while preserving the privacy of the material. The proposed solution permits documents to be compared without disclosing the content to untrusted servers. The fingerprint set for each document is determined in an efficient manner, also developing an inverted index that uses the whole set of fingerprints. Before being uploaded to the untrusted server, this index is secured by the Paillier cryptosystem. This study develops a secure, yet efficient method for scalable encrypted document comparison. To evaluate the computational performance of this method, this paper carries out several comparative assessments against other major approaches
A Lightweight Hybrid Scheme for Hiding Text Messages in Colour Images Using LSB, Lah Transform and Chaotic Techniques
Data security can involve embedding hidden images, text, audio, or video files within other media to prevent hackers from stealing encrypted data. Existing mechanisms suffer from a high risk of security breaches or large computational costs, however. The method proposed in this work incorporates low-complexity encryption and steganography mechanisms to enhance security during transmission while lowering computational complexity. In message encryption, it is recommended that text file data slicing in binary representation, to achieve different lengths of string, be conducted before text file data masking based on the lightweight Lucas series and mod function to ensure the retrieval of text messages is impossible. The steganography algorithm starts by generating a random key stream using a hybrid of two low-complexity chaotic maps, the Tent map and the Ikeda map. By finding a position vector parallel to the input image vector, these keys are used based on the previously generated position vector to randomly select input image data and create four vectors that can be later used as input for the Lah transform. In this paper, we present an approach for hiding encrypted text files using LSB colour image steganography by applying a low-complexity XOR operation to the most significant bits in 24-bit colour cover images. It is necessary to perform inverse Lah transformation to recover the image pixels and ensure that invisible data cannot be retrieved in a particular sequence. Evaluation of the quality of the resulting stego-images and comparison with other ways of performing encryption and message concealment shows that the stego-image has a higher PSNR, a lower MSE, and an SSIM value close to one, illustrating the suitability of the proposed method. It is also considered lightweight in terms of having lower computational overhead
Session-Dependent Token-Based Payload Enciphering Scheme for Integrity Enhancements in Wireless Networks
Wireless networks have continued to evolve to offer connectivity between users and smart devices such as drones and wireless sensor nodes. In this environment, insecure public channels are deployed to link the users to their remote smart devices. Some of the application areas of these smart devices include military surveillance and healthcare monitoring. Since the data collected and transmitted to the users are highly sensitive and private, any leakages can have adverse effects. As such, strong entity authentication should be implemented before any access is granted in these wireless networks. Although numerous protocols have been developed for this purpose, the simultaneous attainment of robust security and privacy at low latencies, execution time and bandwidth remains a mirage. In this paper, a session-dependent token-based payload enciphering scheme for integrity enhancements in wireless networks is presented. This protocol amalgamates fuzzy extraction with extended Chebyshev chaotic maps to boost the integrity of the exchanged payload. The security analysis shows that this scheme offers entity anonymity and backward and forward key secrecy. In addition, it is demonstrated to be robust against secret ephemeral leakage, side-channeling, man-in-the-middle and impersonation attacks, among other security threats. From the performance perspective, the proposed scheme requires the least communication overheads and a relatively low execution time during the authentication process
System initialization and registration phases.
The incorporation of information and communication technologies in the power grids has greatly enhanced efficiency in the management of demand-responses. In addition, smart grids have seen considerable minimization in energy consumption and enhancement in power supply quality. However, the transmission of control and consumption information over open public communication channels renders the transmitted messages vulnerable to numerous security and privacy violations. Although many authentication and key agreement protocols have been developed to counter these issues, the achievement of ideal security and privacy levels at optimal performance still remains an uphill task. In this paper, we leverage on Hamming distance, elliptic curve cryptography, smart cards and biometrics to develop an authentication protocol. It is formally analyzed using the Burrows-Abadi-Needham (BAN) logic, which shows strong mutual authentication and session key negotiation. Its semantic security analysis demonstrates its robustness under all the assumptions of the Dolev-Yao (DY) and Canetti- Krawczyk (CK) threat models. From the performance perspective, it is shown to incur communication, storage and computation complexities compared with other related state of the art protocols.</div
BAN logic notations.
The incorporation of information and communication technologies in the power grids has greatly enhanced efficiency in the management of demand-responses. In addition, smart grids have seen considerable minimization in energy consumption and enhancement in power supply quality. However, the transmission of control and consumption information over open public communication channels renders the transmitted messages vulnerable to numerous security and privacy violations. Although many authentication and key agreement protocols have been developed to counter these issues, the achievement of ideal security and privacy levels at optimal performance still remains an uphill task. In this paper, we leverage on Hamming distance, elliptic curve cryptography, smart cards and biometrics to develop an authentication protocol. It is formally analyzed using the Burrows-Abadi-Needham (BAN) logic, which shows strong mutual authentication and session key negotiation. Its semantic security analysis demonstrates its robustness under all the assumptions of the Dolev-Yao (DY) and Canetti- Krawczyk (CK) threat models. From the performance perspective, it is shown to incur communication, storage and computation complexities compared with other related state of the art protocols.</div
Deployed symbols.
The incorporation of information and communication technologies in the power grids has greatly enhanced efficiency in the management of demand-responses. In addition, smart grids have seen considerable minimization in energy consumption and enhancement in power supply quality. However, the transmission of control and consumption information over open public communication channels renders the transmitted messages vulnerable to numerous security and privacy violations. Although many authentication and key agreement protocols have been developed to counter these issues, the achievement of ideal security and privacy levels at optimal performance still remains an uphill task. In this paper, we leverage on Hamming distance, elliptic curve cryptography, smart cards and biometrics to develop an authentication protocol. It is formally analyzed using the Burrows-Abadi-Needham (BAN) logic, which shows strong mutual authentication and session key negotiation. Its semantic security analysis demonstrates its robustness under all the assumptions of the Dolev-Yao (DY) and Canetti- Krawczyk (CK) threat models. From the performance perspective, it is shown to incur communication, storage and computation complexities compared with other related state of the art protocols.</div
Space complexity comparisons.
The incorporation of information and communication technologies in the power grids has greatly enhanced efficiency in the management of demand-responses. In addition, smart grids have seen considerable minimization in energy consumption and enhancement in power supply quality. However, the transmission of control and consumption information over open public communication channels renders the transmitted messages vulnerable to numerous security and privacy violations. Although many authentication and key agreement protocols have been developed to counter these issues, the achievement of ideal security and privacy levels at optimal performance still remains an uphill task. In this paper, we leverage on Hamming distance, elliptic curve cryptography, smart cards and biometrics to develop an authentication protocol. It is formally analyzed using the Burrows-Abadi-Needham (BAN) logic, which shows strong mutual authentication and session key negotiation. Its semantic security analysis demonstrates its robustness under all the assumptions of the Dolev-Yao (DY) and Canetti- Krawczyk (CK) threat models. From the performance perspective, it is shown to incur communication, storage and computation complexities compared with other related state of the art protocols.</div
Updates on keywords <b><i>w</i></b><sub>1</sub>.
Outsourcing data to remote cloud providers is becoming increasingly popular amongst organizations and individuals. A semi-trusted server uses Searchable Symmetric Encryption (SSE) to keep the search information under acceptable leakage levels whilst searching an encrypted database. A dynamic SSE (DSSE) scheme enables the adding and removing of documents by performing update queries, where some information is leaked to the server each time a record is added or removed. The complexity of structures and cryptographic primitives in most existing DSSE schemes makes them inefficient, in terms of storage, and query requests generate overhead costs on the Smart Device Client (SDC) side. Achieving constant storage cost for SDCs enhances the viability, efficiency, and easy user experience of smart devices, promoting their widespread adoption in various applications while upholding robust privacy and security standards. DSSE schemes must address two important privacy requirements: forward and backward privacy. Due to the increasing number of keywords, the cost of storage on the client side is also increasing at a linear rate. This article introduces an innovative, secure, and lightweight Dynamic Searchable Symmetric Encryption (DSSE) scheme, ensuring Type-II backward and forward privacy without incurring ongoing storage costs and high-cost query generation for the SDC. The proposed scheme, based on an inverted index structure, merges the hash table with linked nodes, linking encrypted keywords in all hash tables. Achieving a one-time O(1) storage cost without keyword counters on the SDC side, the scheme enhances security by generating a fresh key for each update. Experimental results show low-cost query generation on the SDC side (6,460 nanoseconds), making it compatible with resource-limited devices. The scheme outperforms existing ones, reducing server-side search costs significantly.</div