8 research outputs found

    Dissipative current in SIFS Josephson junctions

    Get PDF
    We investigate superconductor/insulator/ferromagnet/superconductor (SIFS) tunnel Josephson junctions in the dirty limit, using the quasiclassical theory. We consider the case of a strong tunnel barrier such that the left S layer and the right FS bilayer are decoupled. We calculate quantitatively the density of states (DOS) in the FS bilayer for arbitrary length of the ferromagnetic layer, using a self-consistent numerical method. We compare these results with a known analytical DOS approximation, which is valid when the ferromagnetic layer is long enough. Finally we calculate quantitatively the current-voltage characteristics of a SIFS junction.Comment: Proceedings of the Vortex VI conference, to be published in Physica

    Inhomogeneous magnetism induced in a superconductor at superconductor-ferromagnet interface

    Full text link
    We study a magnetic proximity effect at superconductor (S) - ferromagnet (F) interface. It is shown that due to an exchange of electrons between the F and S metals ferromagnetic correlations extend into the superconductor, being dependent on interface parameters. We show that ferromagnetic exchange field pair breaking effect leads to a formation of subgap bands in the S layer local density of states, that accommodate only one spin-polarized quasiparticles. Equilibrium magnetization leakage into the S layer as function of SF interface quality and a value of ferromagnetic interaction have also been calculated. We show that a damped-oscillatory behavior versus distance from SF interface is a distinguished feature of the exchange-induced magnetization of the S layer.Comment: 10 pages, 7 Postscript figure

    Theory of charge transport in diffusive normal metal / unconventional singlet superconductor contacts

    Get PDF
    We analyze the transport properties of contacts between unconventional superconductor and normal diffusive metal in the framework of the extended circuit theory. We obtain a general boundary condition for the Keldysh-Nambu Green's functions at the interface that is valid for arbitrary transparencies of the interface. This allows us to investigate the voltage-dependent conductance (conductance spectrum) of a diffusive normal metal (DN)/ unconventional singlet superconductor junction in both ballistic and diffusive cases. For d-wave superconductor, we calculate conductance spectra numerically for different orientations of the junctions, resistances, Thouless energies in DN, and transparencies of the interface. We demonstrate that conductance spectra exhibit a variety of features including a VV-shaped gap-like structure, zero bias conductance peak (ZBCP) and zero bias conductance dip (ZBCD). We show that two distinct mechanisms: (i) coherent Andreev reflection (CAR) in DN and (ii) formation of midgap Andreev bound state (MABS) at the interface of d-wave superconductors, are responsible for ZBCP, their relative importance being dependent on the angle α\alpha between the interface normal and the crystal axis of d-wave superconductors. For α=0\alpha=0, the ZBCP is due to CAR in the junctions of low transparency with small Thouless energies, this is similar to the case of diffusive normal metal / insulator /s-wave superconductor junctions. With increase of α\alpha from zero to π/4\pi/4, the MABS contribution to ZBCP becomes more prominent and the effect of CAR is gradually suppressed. Such complex spectral features shall be observable in conductance spectra of realistic high-TcT_c junctions at very low temperature

    Investigation of Cu 0.5 Ni 0.5 /Nb interface transparency by using current-perpendicular-to-plane measurement

    No full text
    A direct determination of the interfacial transparency on the basis of current-perpendicular-to-plane (CPP) resistances for Cu 0.5 Ni 0.5 /Nb layered system is presented. This particular realization has substantial significance for understanding the interfacial transport in such heterostructures. The unexpected large critical thickness for this weak ferromagnetic containing system can be attributed to the strong pair-breaking effect as a result of the high interfacial transparency. Besides, the strong pair-breaking also plays a decisive role in the occurrence of the dimensionality crossover of the temperature dependent upper critical magnetic field. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011
    corecore