51 research outputs found
Critical phenomena in Newtonian gravity
We investigate the stability of self-similar solutions for a gravitationally
collapsing isothermal sphere in Newtonian gravity by means of a normal mode
analysis. It is found that the Hunter series of solutions are highly unstable,
while neither the Larson-Penston solution nor the homogeneous collapse one have
an analytic unstable mode. Since the homogeneous collapse solution is known to
suffer the kink instability, the present result and recent numerical
simulations strongly support a proposition that the Larson-Penston solution
will be realized in astrophysical situations. It is also found that the Hunter
(A) solution has a single unstable mode, which implies that it is a critical
solution associated with some critical phenomena which are analogous to those
in general relativity. The critical exponent is calculated as
. In contrast to the general relativistic case, the order
parameter will be the collapsed mass. In order to obtain a complete picture of
the Newtonian critical phenomena, full numerical simulations will be needed.Comment: 25 pages, 7 figures, accepted for publication in Physical Review
No Go Theorem for Kinematic Self-Similarity with A Polytropic Equation of State
We have investigated spherically symmetric spacetimes which contain a perfect
fluid obeying the polytropic equation of state and admit a kinematic
self-similar vector of the second kind which is neither parallel nor orthogonal
to the fluid flow. We have assumed two kinds of polytropic equations of state
and shown in general relativity that such spacetimes must be vacuum.Comment: 5 pages, no figures. Revtex. One word added to the title. Final
version to appear in Physical Review D as a Brief Repor
Thermodynamics and collapse of self-gravitating Brownian particles in D dimensions
We address the thermodynamics (equilibrium density profiles, phase diagram,
instability analysis...) and the collapse of a self-gravitating gas of Brownian
particles in D dimensions, in both canonical and microcanonical ensembles. In
the canonical ensemble, we derive the analytic form of the density scaling
profile which decays as f(x)=x^{-\alpha}, with alpha=2. In the microcanonical
ensemble, we show that f decays as f(x)=x^{-\alpha_{max}}, where \alpha_{max}
is a non-trivial exponent. We derive exact expansions for alpha_{max} and f in
the limit of large D. Finally, we solve the problem in D=2, which displays
rather rich and peculiar features
Dynamic Evolution Model of Isothermal Voids and Shocks
We explore self-similar hydrodynamic evolution of central voids embedded in
an isothermal gas of spherical symmetry under the self-gravity. More
specifically, we study voids expanding at constant radial speeds in an
isothermal gas and construct all types of possible void solutions without or
with shocks in surrounding envelopes. We examine properties of void boundaries
and outer envelopes. Voids without shocks are all bounded by overdense shells
and either inflows or outflows in the outer envelope may occur. These
solutions, referred to as type void solutions, are further
divided into subtypes and
according to their characteristic behaviours across the sonic critical line
(SCL). Void solutions with shocks in envelopes are referred to as type
voids and can have both dense and quasi-smooth edges.
Asymptotically, outflows, breezes, inflows, accretions and static outer
envelopes may all surround such type voids. Both cases of
constant and varying temperatures across isothermal shock fronts are analyzed;
they are referred to as types and
void shock solutions. We apply the `phase net matching procedure' to construct
various self-similar void solutions. We also present analysis on void
generation mechanisms and describe several astrophysical applications. By
including self-gravity, gas pressure and shocks, our isothermal self-similar
void (ISSV) model is adaptable to various astrophysical systems such as
planetary nebulae, hot bubbles and superbubbles in the interstellar medium as
well as supernova remnants.Comment: 24 pages, 13 figuers, accepted by ApS
The formation of planetary disks and winds: an ultraviolet view
Planetary systems are angular momentum reservoirs generated during star
formation. This accretion process produces very powerful engines able to drive
the optical jets and the molecular outflows. A fraction of the engine energy is
released into heating thus the temperature of the engine ranges from the 3000K
of the inner disk material to the 10MK in the areas where magnetic reconnection
occurs. There are important unsolved problems concerning the nature of the
engine, its evolution and the impact of the engine in the chemical evolution of
the inner disk. Of special relevance is the understanding of the shear layer
between the stellar photosphere and the disk; this layer controls a significant
fraction of the magnetic field building up and the subsequent dissipative
processes ougth to be studied in the UV.
This contribution focus on describing the connections between 1 Myr old suns
and the Sun and the requirements for new UV instrumentation to address their
evolution during this period. Two types of observations are shown to be needed:
monitoring programmes and high resolution imaging down to, at least,
milliarsecond scales.Comment: Accepted for publication in Astrophysics and Space Science 9 figure
Testing the interaction of dark energy to dark matter through the analysis of virial relaxation of clusters Abell Clusters A586 and A1689 using realistic density profiles
Interaction between dark energy and dark matter is probed through deviation
from the virial equilibrium for two relaxed clusters: A586 and A1689. The
evaluation of the virial equilibrium is performed using realistic density
profiles. The virial ratios found for the more realistic density profiles are
consistent with the absence of interaction.Comment: 16pp 1 fig; accepted by GeR
Dynamic Evolution of a Quasi-Spherical General Polytropic Magnetofluid with Self-Gravity
In various astrophysical contexts, we analyze self-similar behaviours of
magnetohydrodynamic (MHD) evolution of a quasi-spherical polytropic magnetized
gas under self-gravity with the specific entropy conserved along streamlines.
In particular, this MHD model analysis frees the scaling parameter in the
conventional polytropic self-similar transformation from the constraint of
with being the polytropic index and therefore
substantially generalizes earlier analysis results on polytropic gas dynamics
that has a constant specific entropy everywhere in space at all time. On the
basis of the self-similar nonlinear MHD ordinary differential equations, we
examine behaviours of the magnetosonic critical curves, the MHD shock
conditions, and various asymptotic solutions. We then construct global
semi-complete self-similar MHD solutions using a combination of analytical and
numerical means and indicate plausible astrophysical applications of these
magnetized flow solutions with or without MHD shocks.Comment: 21 pages, 7 figures, accepted for publication in APS
The First Magnetic Fields
We review current ideas on the origin of galactic and extragalactic magnetic
fields. We begin by summarizing observations of magnetic fields at cosmological
redshifts and on cosmological scales. These observations translate into
constraints on the strength and scale magnetic fields must have during the
early stages of galaxy formation in order to seed the galactic dynamo. We
examine mechanisms for the generation of magnetic fields that operate prior
during inflation and during subsequent phase transitions such as electroweak
symmetry breaking and the quark-hadron phase transition. The implications of
strong primordial magnetic fields for the reionization epoch as well as the
first generation of stars is discussed in detail. The exotic, early-Universe
mechanisms are contrasted with astrophysical processes that generate fields
after recombination. For example, a Biermann-type battery can operate in a
proto-galaxy during the early stages of structure formation. Moreover, magnetic
fields in either an early generation of stars or active galactic nuclei can be
dispersed into the intergalactic medium.Comment: Accepted for publication in Space Science Reviews. Pdf can be also
downloaded from http://canopus.cnu.ac.kr/ryu/cosmic-mag1.pd
Interstellar MHD Turbulence and Star Formation
This chapter reviews the nature of turbulence in the Galactic interstellar
medium (ISM) and its connections to the star formation (SF) process. The ISM is
turbulent, magnetized, self-gravitating, and is subject to heating and cooling
processes that control its thermodynamic behavior. The turbulence in the warm
and hot ionized components of the ISM appears to be trans- or subsonic, and
thus to behave nearly incompressibly. However, the neutral warm and cold
components are highly compressible, as a consequence of both thermal
instability in the atomic gas and of moderately-to-strongly supersonic motions
in the roughly isothermal cold atomic and molecular components. Within this
context, we discuss: i) the production and statistical distribution of
turbulent density fluctuations in both isothermal and polytropic media; ii) the
nature of the clumps produced by thermal instability, noting that, contrary to
classical ideas, they in general accrete mass from their environment; iii) the
density-magnetic field correlation (or lack thereof) in turbulent density
fluctuations, as a consequence of the superposition of the different wave modes
in the turbulent flow; iv) the evolution of the mass-to-magnetic flux ratio
(MFR) in density fluctuations as they are built up by dynamic compressions; v)
the formation of cold, dense clouds aided by thermal instability; vi) the
expectation that star-forming molecular clouds are likely to be undergoing
global gravitational contraction, rather than being near equilibrium, and vii)
the regulation of the star formation rate (SFR) in such gravitationally
contracting clouds by stellar feedback which, rather than keeping the clouds
from collapsing, evaporates and diperses them while they collapse.Comment: 43 pages. Invited chapter for the book "Magnetic Fields in Diffuse
Media", edited by Elisabete de Gouveia dal Pino and Alex Lazarian. Revised as
per referee's recommendation
The Similarity Hypothesis in General Relativity
Self-similar models are important in general relativity and other fundamental
theories. In this paper we shall discuss the ``similarity hypothesis'', which
asserts that under a variety of physical circumstances solutions of these
theories will naturally evolve to a self-similar form. We will find there is
good evidence for this in the context of both spatially homogenous and
inhomogeneous cosmological models, although in some cases the self-similar
model is only an intermediate attractor. There are also a wide variety of
situations, including critical pheneomena, in which spherically symmetric
models tend towards self-similarity. However, this does not happen in all cases
and it is it is important to understand the prerequisites for the conjecture.Comment: to be submitted to Gen. Rel. Gra
- …
