118 research outputs found

    Cumbria and the northern Pennines

    Get PDF
    Carboniferous rocks within the Cumbria and northern Pennines region are bound by the Maryport–Stublick–Ninety Fathom Fault System, which forms the northern boundary of the Lake District and Alston blocks (Fig. 12.1). In the Pennines, the succession occupies the Alston and Askrigg blocks and the intervening Stainmore Trough, a broadly east-west trending graben. Carboniferous strata also flank the Lake District High, occurring at outcrop in north Cumbria, Furness and Cartmel (south Cumbria) and the Vale of Eden, and in the subsurface in west Cumbria. The Askrigg Block succession is separated from that of the Craven Basin (Chapter 11), to the south, by the Craven Fault System

    Extension of Earth-Moon libration point orbits with solar sail propulsion

    Get PDF
    This paper presents families of libration point orbits in the Earth-Moon system that originate from complementing the classical circular restricted three-body problem with a solar sail. Through the use of a differential correction scheme in combination with a continuation on the solar sail induced acceleration, families of Lyapunov, halo, vertical Lyapunov, Earth-centred, and distant retrograde orbits are created. As the solar sail circular restricted three-body problem is non-autonomous, a constraint defined within the differential correction scheme ensures that all orbits are periodic with the Sun’s motion around the Earth-Moon system. The continuation method then starts from a classical libration point orbit with a suitable period and increases the solar sail acceleration magnitude to obtain families of orbits that are parametrised by this acceleration. Furthermore, different solar sail steering laws are considered (both in-plane and out-of-plane, and either fixed in the synodic frame or fixed with respect to the direction of sunlight), adding to the wealth of families of solar sail enabled libration point orbits presented. Finally, the linear stability properties of the generated orbits are investigated to assess the need for active orbital control. It is shown that the solar sail induced acceleration can have a positive effect on the stability of some orbit families, especially those at the L2 point, but that it most often (further) destabilises the orbit. Active control will therefore be needed to ensure long-term survivability of these orbits

    Selecting superluminous supernovae in faint galaxies from the first year of the Pan-STARRS1 Medium Deep Survey

    Get PDF
    The Pan-STARRS1 (PS1) survey has obtained imaging in five bands (griz yP1) over 10 Medium Deep Survey (MDS) fields covering a total of 70 square degrees. This paper describes the search for apparently hostless supernovae (SNe) within the first year of PS1 MDS data with an aim of discovering superluminous supernovae (SLSNe). A total of 249 hostless transients were discovered down to a limiting magnitude of MAB ∼ 23.5, of which 76 were classified as Type Ia supernovae (SNe Ia). There were 57 SNe with complete light curves that are likely core-collapse SNe (CCSNe) or type Ic SLSNe and 12 of these have had spectra taken. Of these 12 hostless, non-Type Ia SNe, 7 were SLSNe of type Ic at redshifts between 0.5 and 1.4. This illustrates that the discovery rate of type Ic SLSNe can be maximized by concentrating on hostless transients and removing normal SNe Ia. We present data for two possible SLSNe; PS1-10pm (z = 1.206) and PS1-10ahf (z = 1.1), and estimate the rate of type Ic SLSNe to be between 3+3−2×10−5 and 8+2−1×10−5 that of the CCSN rate within 0.3 ≤ z ≤ 1.4 by applying a Monte Carlo technique. The rate of slowly evolving, type Ic SLSNe (such as SN2007bi) is estimated as a factor of 10 lower than this range

    Cosmological Constraints from Measurements of Type Ia Supernovae Discovered during the First 1.5 yr of the Pan-STARRS1 Survey

    Get PDF
    We present griz P1 light curves of 146 spectroscopically confirmed Type Ia supernovae (SNe Ia; 0.03 < z < 0.65) discovered during the first 1.5 yr of the Pan-STARRS1 Medium Deep Survey. The Pan-STARRS1 natural photometric system is determined by a combination of on-site measurements of the instrument response function and observations of spectrophotometric standard stars. We find that the systematic uncertainties in the photometric system are currently 1.2% without accounting for the uncertainty in the Hubble Space Telescope Calspec definition of the AB system. A Hubble diagram is constructed with a subset of 113 out of 146 SNe Ia that pass our light curve quality cuts. The cosmological fit to 310 SNe Ia (113 PS1 SNe Ia + 222 light curves from 197 low-z SNe Ia), using only supernovae (SNe) and assuming a constant dark energy equation of state and flatness, yields w=1.1200.206+0.360(Stat)0.291+0.269(Sys)w=-1.120^{+0.360}_{-0.206}\hbox{(Stat)} ^{+0.269}_{-0.291}\hbox{(Sys)}. When combined with BAO+CMB(Planck)+H 0, the analysis yields ΩM=0.2800.012+0.013\Omega _{\rm M}=0.280^{+0.013}_{-0.012} and w=1.1660.069+0.072w=-1.166^{+0.072}_{-0.069} including all identified systematics. The value of w is inconsistent with the cosmological constant value of –1 at the 2.3σ level. Tension endures after removing either the baryon acoustic oscillation (BAO) or the H 0 constraint, though it is strongest when including the H 0 constraint. If we include WMAP9 cosmic microwave background (CMB) constraints instead of those from Planck, we find w=1.1240.065+0.083w=-1.124^{+0.083}_{-0.065}, which diminishes the discord to <2σ. We cannot conclude whether the tension with flat ΛCDM is a feature of dark energy, new physics, or a combination of chance and systematic errors. The full Pan-STARRS1 SN sample with ~three times as many SNe should provide more conclusive results

    Quorum sensing:Implications on rhamnolipid biosurfactant production

    Get PDF

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    A lithostratigraphical framework for the Carboniferous successions of northern Great Britain (onshore)

    Get PDF
    The Stratigraphy Committee of the British Geological Survey (BGS) is undertaking a review of stratigraphical classification for all parts of Great Britain. Several Stratigraphical Framework Committees (SFC) have been established to review problematical issues for various parts of the stratigraphical column. Each SFC has the following terms of reference: • to review the lithostratigraphical nomenclature of designated stratigraphical successions for a given region, identifying problems in classification and correlation • to propose a lithostratigraphical framework down to formation level • to organise peer review of the scheme • to present the results in a document suitable for publication • to ensure that full definitions of the lithostratigraphical units are held in the web-accessible BGS Lexicon of Named Rock Units for the areas of responsibility covered by the SFC. The economic importance of strata of Carboniferous age has resulted in over 200 years of research attempting to classify them. Much of this work occurred long before guidance was available for best practice in naming lithostratigraphical units. Consequently, a haphazard approach to the establishment of the hierarchy of units has resulted. From an early, relatively simple framework, subsequent surveys and publications have greatly added to the complexity of the nomenclature. Often, this reflected the localised nature of research with a tendency to identify numerous local names for essentially the same unit. Also, end Carboniferous and subsequent tectonic events have resulted in the isolation by faulting or erosion of laterally contiguous deposits often resulting in a plethora of local names. This complexity in nomenclature has, to an extent, hindered the regional understanding of the Carboniferous successions throughout Great Britain. Two committees have reported on the Carboniferous succession of the Midland Valley of Scotland (Browne et al., 1999) and the Westphalian to early Permian red-bed successions of the Pennine Basin (Powell et al., 2000) respectively. Further committees were established to review the Carboniferous successions of the Scottish Borders and the Namurian successions of the Pennine Basin. In 2000, these committees were subsumed into a single committee, which reviewed the entire Carboniferous successions throughout Great Britain. This report summarises the SFC lithostratigraphical scheme for onshore Carboniferous successions of northern Great Britain. A further report summarises the scheme employed in southern Great Britain (see Waters et al., 2009). The first part of this report summarises the structural and palaeogeographical setting of northern Great Britain throughout the Carboniferous Period. The second part describes the key techniques of correlation of successions, principally biostratigraphy. The third part indicates the principle for the development of the new lithostratigraphical scheme. This demonstrates how the group hierarchy has been linked to major lithofacies and the procedures for rationalising existing nomenclature. The fourth and largest part of the report provides a full description of the group and formation framework for each of three regions; Scotland north of the Southern Upland Fault, southern Scotland, and the Northern England Province (including the Isle of Man). Each entry includes the rank of the nomenclature, and a description of its origin and history and key references, principal lithologies, environment of deposition, stratotypes, lower and upper boundaries, thickness, geographical extent, age range and any subdivisions to member level. The members themselves are similarly fully described. An appendix (Appendix 1) provides an alphabetical listing of each supergroup, group, formation and member respectively, and shows the heirarchical relationship between the lithostratigraphical units. It also provides computer codes from the BGS Lexicon of Named Rock Units where these have been allocated. Appendix 2 gives the BGS Lexicon of Named Rock Units computer codes for the lithostratigraphical beds shown in Figures 6 and 8–15 and Appendix 3 lists all the obsolete lithostratigraphical terms mentioned in the text and provides the units they are now equivalent to or included within

    Northumberland Trough and Solway Basin

    Get PDF
    Carboniferous rocks within this region occupy a broadly east–west graben, referred to as the Northumberland Trough within Northumberland (Bewcastle to the North Sea coast) and the Solway Basin in the vicinity of the Solway Firth, where much of the succession is obscured by Permo-Triassic strata (Fig. 13.1). The graben is bounded to the south by the Maryport-Stublick-Ninety Fathom Fault System, which forms the northern boundary of the Lake District and Alston blocks (see Chapter 12). The Carboniferous rocks are broadly separated from the Midland Valley of Scotland (Chapter 14), to the north, by the Lower Palaeozoic rocks of the Southern Uplands, which formed an emergent upland area throughout much of the Carboniferous, with local deposition within small basins. At the eastern onshore extent of the Southern Uplands a relatively condensed Carboniferous succession was deposited upon the Cheviot Block

    Optimization of Anti-Pseudomonal Antibiotics for Cystic Fibrosis Pulmonary Exacerbations: III. Fluoroquinolones

    No full text
    This review is the third installment in a comprehensive State of the Art series and aims to evaluate the use of fluoroquinolones in the management of P. aeruginosa infection in both children and adults with cystic fibrosis (CF). Oral and intravenous ciprofloxacin have been shown to be well‐tolerated in the treatment of acute pulmonary exacerbations (APE) secondary to P. aeruginosa. Older literature supports an oral dosing regimen of 40 mg/kg/day divided every 12 hr, up to 2 g/day, and intravenous (IV) ciprofloxacin 30 mg/kg/day divided every 8 hr, maximum 1.2 g/day in children, and 750 mg administered orally twice a day or 400 mg IV every 8 hr in adults. However, a recent pharmacodynamic (PD) modeling study shows that the literature, U.S. Food and Drug Administration (FDA)‐approved, and Cystic Fibrosis Foundation (CFF) guideline dosing regimens may be suboptimal for the treatment of P. aeruginosa in APE. Further study is warranted to determine if higher doses of ciprofloxacin are needed. Limited pharmacokinetic (PK), PK/PD, and efficacy studies involving levofloxacin exist in adult patients with CF. No pediatric data exists for levofloxacin in CF patients. Further study is needed to determine the tolerability and efficacy of levofloxacin in APE. At this time, the routine use of levofloxacin in the treatment of APE in pediatric and adult patients cannot be recommended. Pediatr Pulmonol. 2013; 48:211–220. © 2012 Wiley Periodicals, Inc
    corecore