1,146 research outputs found

    Rietveld refinement of the crystal structures of Rb2X Si5O12 (X = Ni, Mn)

    Get PDF
    The synthetic leucite silicate framework mineral analogues Rb2XSi5O12 {X = Ni [dirubidium nickel(II) pentasilicate] and Mn [dirubidium manganese(II) pentasilicate]} have been prepared by high-temperature solid-state synthesis. The results of Rietveld refinements, using X-ray powder diffraction data collected using Cu K[alpha] X-rays, show that the title compounds crystallize in the space group Pbca and adopt the cation-ordered structure of Cs2CdSi5O12 and other leucites. The structures consist of tetrahedral SiO4 and XO4 units sharing corners to form a partially substituted silicate framework. Extraframework Rb+ cations sit in channels in the framework. All atoms occupy the 8c general position for this space group. In these refined structures, silicon and X atoms are ordered onto separate tetrahedrally coordinated sites (T-sites). However, the Ni displacement parameter and the Ni—O bond lengths suggest that for the X = Ni sample, there may actually be some T-site cation disorder

    Production of cold bromine atoms at zero mean velocity by photodissociation

    Get PDF
    The production of a translationally cold (T < 1 K) sample of bromine atoms with estimated densities of up to 108 cm−3 using photodissociation is presented. A molecular beam of Br2 seeded in Kr is photodissociated into Br + Br* fragments, and the velocity distribution of the atomic fragments is determined using (2 + 1) REMPI and velocity map ion imaging. By recording images with varying delay times between the dissociation and probe lasers, we investigate the length of time after dissociation for which atoms remain in the laser focus, and determine the velocity spread of those atoms. By careful selection of the photolysis energy, it is found that a fraction of the atoms can be detected for delay times in excess of 100 μs. These are atoms for which the fragment recoil velocity vector is directly opposed and equal in magnitude to the parent beam velocity leading to a resultant lab frame velocity of approximately zero. The FWHM velocity spreads of detected atoms along the beam axis after 100 μs are less than 5 ms−1, corresponding to temperatures in the milliKelvin range, opening the possibility that this technique could be utilized as a slow Br atom source

    Exploring sources of variation in thermoluminescence emissions and anomalous fading in alkali feldspars

    Get PDF
    Alkali feldspar is routinely used in retrospective dosimetry using luminescence methods. However there is a signal loss over time, termed ‘anomalous fading’, which results in age underestimation if uncorrected. Although significant improvements have been made in recent years, luminescence dating of feldspars remains challenging. This paper investigates the relationships between chemistry, structural state and the scale of exsolution with thermoluminescence (TL) emission spectra and infrared stimulated luminescence (IRSL) fading rates. We measure TL emission spectra, where possible linking the recombination site to physical features of the feldspar crystals. We show that fading rates are lowest in ordered end-member Na- and K-feldspars but significantly greater in disordered end-members, showing that Al–Si order influences fading. As well as having very low fading rates, ordered end-member samples have distinctive TL emission spectra, with the yellow-green emission dominant, while all other samples have a dominant blue emission. Perthite, i.e. exsolved members of the (Na,K)-feldspar solid solution, show greater fading than disordered end-members and fading is greatest in semi-coherent macroperthite. We propose that the state of Al–Si-order, and the occurrence of defects and dislocations at the perthite lamellar interfaces influence anomalous fading rates in feldspar

    Combined ion and atom trap for low temperature ion-atom physics

    Full text link
    We report an experimental apparatus and technique which simultaneously traps ions and cold atoms with spatial overlap. Such an apparatus is motivated by the study of ion-atom processes at temperatures ranging from hot to ultra-cold. This area is a largely unexplored domain of physics with cold trapped atoms. In this article we discuss the general design considerations for combining these two traps and present our experimental setup. The ion trap and atom traps are characterized independently of each other. The simultaneous operation of both is then described and experimental signatures of the effect of the ions and cold-atoms on each other are presented. In conclusion the use of such an instrument for several problems in physics and chemistry is briefly discussed.Comment: 24 pages, 13 figures. Figures Fixe

    The Mars Science Laboratory record of optical depth measurements via solar imaging

    Get PDF
    Acknowledgments We are grateful to the teams that developed, landed, and operated Curiosity on Mars, allowing for the present study. The research was conducted partly at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). MTL was supported via sub-contract 18-1187 from Malin Space Science Systems, Inc. SDG was supported by the MSL Participating Scientist program. JMB was supported by MSL Participating Scientist Grant 80NSSC22K0657. AV-R was supported by the Comunidad de Madrid Project S2018/NMT-4291 (TEC2SPACE-CM). M-PZ was supported by grant PID2019-104205GB-C21 funded by MCIN/AEI/10.13039/501100011033. JM-T was supported by UK Space Agency projects ST/W00190X/1 and ST/V00610X/1.Peer reviewedPostprin

    Large-scale collective motion of RFGC galaxies

    Full text link
    We processed the data about radial velocities and HI linewidths for 1678 flat edge-on spirals from the Revised Flat Galaxy Catalogue. We obtained the parameters of the multipole components of large-scale velocity field of collective non-Hubble galaxy motion as well as the parameters of the generalized Tully-Fisher relationship in the "HI line width - linear diameter" version. All the calculations were performed independently in the framework of three models, where the multipole decomposition of the galaxy velocity field was limited to a dipole, quadrupole and octopole terms respectively. We showed that both the quadrupole and the octopole components are statistically significant. On the basis of the compiled list of peculiar velocities of 1623 galaxies we obtained the estimations of cosmological parameters Omega_m and sigma_8. This estimation is obtained in both graphical form and as a constraint of the value S_8=sigma_8(Omega_m/0.3)^0.35 = 0.91 +/- 0.05.Comment: Accepted for publication in Astrophysics and Space Scienc

    Deep tubewell microbial water quality and access in arsenic mitigation programs in rural Bangladesh

    Get PDF
    The objective of this paper is to determine whether deep tubewells installed through arsenic mitigation efforts in rural Bangladesh provide better drinking water microbial quality compared to shallow tubewells. We conducted a stratified random cross-sectional survey of 484 households to assess microbial contamination of deep tubewell water at source and at point of use (POU) compared to shallow tubewell water using the Compartment Bag Test. In addition, we measured storage time, distance, travel time and ownership status among both sets of users to assess deep tubewell efficacy and under what conditions they offer poorer or better water quality. Differences in tubewell characteristics were compared using non-parametric Mann-Whitney U tests and two-proportion Z-tests. Prevalence ratios of microbial contamination stratified by water quality, storage time and distance to tubewells and ownership were estimated using unadjusted Mantel-Haenszel tests. There was no significant difference in microbial contamination between shallow and deep tubewells at source. The presence of POU water microbial contamination in storage containers in deep tubewell households was 1.11 times the prevalence in shallow tubewell storage containers (95% CI = 0.97–1.27). Deep tubewell users stored water longer and walked significantly farther to obtain water compared to shallow tubewell users. Among deep tubewell households, those residing farther away from the source were 1.24 times as likely to drink contaminated water from storage containers compared to those located nearby (95% CI = 1.04–1.48). Our findings suggest that deep tubewells have comparable water quality to shallow tubewells at source, but increasing distance from the household exacerbates risk of microbial contamination at POU

    k=0Magnetic Structure and Absence of Ferroelectricity in SmFeO3

    Get PDF
    SmFeO3 has attracted considerable attention very recently due to the reported multiferroic properties above room-temperature. We have performed powder and single crystal neutron diffraction as well as complementary polarization dependent soft X-ray absorption spectroscopy measurements on floating-zone grown SmFeO3 single crystals in order to determine its magnetic structure. We found a k=0 G-type collinear antiferromagnetic structure that is not compatible with inverse Dzyaloshinskii-Moriya interaction driven ferroelectricity. While the structural data reveals a clear sign for magneto-elastic coupling at the N\'eel-temperature of ~675 K, the dielectric measurements remain silent as far as ferroelectricity is concerned

    DT/T beyond linear theory

    Full text link
    The major contribution to the anisotropy of the temperature of the Cosmic Microwave Background (CMB) radiation is believed to come from the interaction of linear density perturbations with the radiation previous to the decoupling time. Assuming a standard thermal history for the gas after recombination, only the gravitational field produced by the linear density perturbations present on a Ω1\Omega\neq 1 universe can generate anisotropies at low z (these anisotropies would manifest on large angular scales). However, secondary anisotropies are inevitably produced during the nonlinear evolution of matter at late times even in a universe with a standard thermal history. Two effects associated to this nonlinear phase can give rise to new anisotropies: the time-varying gravitational potential of nonlinear structures (Rees-Sciama RS effect) and the inverse Compton scattering of the microwave photons with hot electrons in clusters of galaxies (Sunyaev-Zeldovich SZ effect). These two effects can produce distinct imprints on the CMB temperature anisotropy. We discuss the amplitude of the anisotropies expected and the relevant angular scales in different cosmological scenarios. Future sensitive experiments will be able to probe the CMB anisotropies beyong the first order primary contribution.Comment: plain tex, 16 pages, 3 figures. Proceedings of the Laredo Advance School on Astrophysics "The universe at high-z, large-scale structure and the cosmic microwave background". To be publised by Springer-Verla

    Functionally overlapping variants control tuberculosis susceptibility in collaborative cross mice

    Get PDF
    Host genetics plays an important role in determining the outcome of Mycobacterium tuberculosis infection. We previously found that Collaborative Cross (CC) mouse strains differ in their susceptibility to M. tuberculosis and that the CC042/ GeniUnc (CC042) strain suffered from a rapidly progressive disease and failed to produce the protective cytokine gamma interferon (IFN-γ) in the lung. Here, we used parallel genetic and immunological approaches to investigate the basis of CC042 mouse susceptibility. Using a population derived from a CC001/Unc (CC001) × CC042 intercross, we mapped four quantitative trait loci (QTL) underlying tuberculosis immunophenotypes (Tip1 to Tip4). These included QTL that were associated with bacterial burden, IFN-γ production following infection, and an IFN-γ-independent mechanism of bacterial control. Further immunological characterization revealed that CC042 animals recruited relatively few antigen-specific T cells to the lung and that these T cells failed to express the integrin alpha L (αL; i.e., CD11a), which contributes to T cell activation and migration. These defects could be explained by a CC042 private variant in the Itgal gene, which encodes CD11a and is found within the Tip2 interval. This 15-bp deletion leads to aberrant mRNA splicing and is predicted to result in a truncated protein product. The ItgalCC042 genotype was associated with all measured disease traits, indicating that this variant is a major determinant of susceptibility in CC042 mice. The combined effect of functionally distinct Tip variants likely explains the profound susceptibility of CC042 mice and highlights the multigenic nature of tuberculosis control in the Collaborative Cross. IMPORTANCE The variable outcome of Mycobacterium tuberculosis infection observed in natural populations is difficult to model in genetically homogeneous small-animal models. The newly developed Collaborative Cross (CC) represents a reproducible panel of genetically diverse mice that display a broad range of phenotypic responses to infection. We explored the genetic basis of this variation, focusing on a CC line that is highly susceptible to M. tuberculosis infection. This study identified multiple quantitative trait loci associated with bacterial control and cytokine production, including one that is caused by a novel loss-of-function mutation in the Itgal gene, which is necessary for T cell recruitment to the infected lung. These studies verify the multigenic control of mycobacterial disease in the CC panel, identify genetic loci controlling diverse aspects of pathogenesis, and highlight the utility of the CC resource
    corecore