25 research outputs found
Pair creation: back-reactions and damping
We solve the quantum Vlasov equation for fermions and bosons, incorporating
spontaneous pair creation in the presence of back-reactions and collisions.
Pair creation is initiated by an external impulse field and the source term is
non-Markovian. A simultaneous solution of Maxwell's equation in the presence of
feedback yields an internal current and electric field that exhibit plasma
oscillations with a period tau_pl. Allowing for collisions, these oscillations
are damped on a time-scale, tau_r, determined by the collision frequency.
Plasma oscillations cannot affect the early stages of the formation of a
quark-gluon plasma unless tau_r >> tau_pl and tau_pl approx. 1/Lambda_QCD
approx 1 fm/c.Comment: 16 pages, 6 figure, REVTEX, epsfig.st
Vacuum instability in external fields
We study particles creation in arbitrary space-time dimensions by external
electric fields, in particular, by fields, which are acting for a finite time.
The time and dimensional analysis of the vacuum instability is presented. It is
shown that the distributions of particles created by quasiconstant electric
fields can be written in a form which has a thermal character and seems to be
universal. Its application, for example, to the particles creation in external
constant gravitational field reproduces the Hawking temperature exactly.Comment: 36 pages, LaTe
The Chiral Magnetic Effect and Axial Anomalies
We give an elementary derivation of the chiral magnetic effect based on a
strong magnetic field lowest-Landau-level projection in conjunction with the
well-known axial anomalies in two- and four-dimensional space-time. The
argument is general, based on a Schur decomposition of the Dirac operator. In
the dimensionally reduced theory, the chiral magnetic effect is directly
related to the relativistic form of the Peierls instability, leading to a
spiral form of the condensate, the chiral magnetic spiral. We then discuss the
competition between spin projection, due to a strong magnetic field, and
chirality projection, due to an instanton, for light fermions in QCD and QED.
The resulting asymmetric distortion of the zero modes and near-zero modes is
another aspect of the chiral magnetic effect.Comment: 33 pages, 5 figures, to appear in Lect. Notes Phys. "Strongly
interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K.
Landsteiner, A. Schmitt, H.-U. Ye
Clustering Algorithms: Their Application to Gene Expression Data
Gene expression data hide vital information required to understand the biological process that takes place in a particular organism in relation to its environment. Deciphering the hidden patterns in gene expression data proffers a prodigious preference to strengthen the understanding of functional genomics. The complexity of biological networks and the volume of genes present increase the challenges of comprehending and interpretation of the resulting mass of data, which consists of millions of measurements; these data also inhibit vagueness, imprecision, and noise. Therefore, the use of clustering techniques is a first step toward addressing these challenges, which is essential in the data mining process to reveal natural structures and iden-tify interesting patterns in the underlying data. The clustering of gene expression data has been proven to be useful in making known the natural structure inherent in gene expression data, understanding gene functions, cellular processes, and subtypes of cells, mining useful information from noisy data, and understanding gene regulation. The other benefit of clustering gene expression data is the identification of homology, which is very important in vaccine design. This review examines the various clustering algorithms applicable to the gene expression data in order to discover and provide useful knowledge of the appropriate clustering technique that will guarantee stability and high degree of accuracy in its analysis procedure
Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche
The initiation of an intestinal tumour is a probabilistic process that depends on the competition between mutant and normal epithelial stem cells in crypts1. Intestinal stem cells are closely associated with a diverse but poorly characterized network of mesenchymal cell types2,3. However, whether the physiological mesenchymal microenvironment of mutant stem cells affects tumour initiation remains unknown. Here we provide in vivo evidence that the mesenchymal niche controls tumour initiation in trans. By characterizing the heterogeneity of the intestinal mesenchyme using single-cell RNA-sequencing analysis, we identified a population of rare pericryptal Ptgs2-expressing fibroblasts that constitutively process arachidonic acid into highly labile prostaglandin E2 (PGE2). Specific ablation of Ptgs2 in fibroblasts was sufficient to prevent tumour initiation in two different models of sporadic, autochthonous tumorigenesis. Mechanistically, single-cell RNA-sequencing analyses of a mesenchymal niche model showed that fibroblast-derived PGE2 drives the expansion οf a population of Sca-1+ reserve-like stem cells. These express a strong regenerative/tumorigenic program, driven by the Hippo pathway effector Yap. In vivo, Yap is indispensable for Sca-1+ cell expansion and early tumour initiation and displays a nuclear localization in both mouse and human adenomas. Using organoid experiments, we identified a molecular mechanism whereby PGE2 promotes Yap dephosphorylation, nuclear translocation and transcriptional activity by signalling through the receptor Ptger4. Epithelial-specific ablation of Ptger4 misdirected the regenerative reprogramming of stem cells and prevented Sca-1+ cell expansion and sporadic tumour initiation in mutant mice, thereby demonstrating the robust paracrine control of tumour-initiating stem cells by PGE2–Ptger4. Analyses of patient-derived organoids established that PGE2–PTGER4 also regulates stem-cell function in humans. Our study demonstrates that initiation of colorectal cancer is orchestrated by the mesenchymal niche and reveals a mechanism by which rare pericryptal Ptgs2-expressing fibroblasts exert paracrine control over tumour-initiating stem cells via the druggable PGE2–Ptger4–Yap signalling axis. © 2020, The Author(s), under exclusive licence to Springer Nature Limited