25 research outputs found

    Justification of the coupled-mode approximation for a nonlinear elliptic problem with a periodic potential

    Full text link
    Coupled-mode systems are used in physical literature to simplify the nonlinear Maxwell and Gross-Pitaevskii equations with a small periodic potential and to approximate localized solutions called gap solitons by analytical expressions involving hyperbolic functions. We justify the use of the one-dimensional stationary coupled-mode system for a relevant elliptic problem by employing the method of Lyapunov--Schmidt reductions in Fourier space. In particular, existence of periodic/anti-periodic and decaying solutions is proved and the error terms are controlled in suitable norms. The use of multi-dimensional stationary coupled-mode systems is justified for analysis of bifurcations of periodic/anti-periodic solutions in a small multi-dimensional periodic potential.Comment: 18 pages, no figure

    Coupled-mode equations and gap solitons in a two-dimensional nonlinear elliptic problem with a separable periodic potential

    Full text link
    We address a two-dimensional nonlinear elliptic problem with a finite-amplitude periodic potential. For a class of separable symmetric potentials, we study the bifurcation of the first band gap in the spectrum of the linear Schr\"{o}dinger operator and the relevant coupled-mode equations to describe this bifurcation. The coupled-mode equations are derived by the rigorous analysis based on the Fourier--Bloch decomposition and the Implicit Function Theorem in the space of bounded continuous functions vanishing at infinity. Persistence of reversible localized solutions, called gap solitons, beyond the coupled-mode equations is proved under a non-degeneracy assumption on the kernel of the linearization operator. Various branches of reversible localized solutions are classified numerically in the framework of the coupled-mode equations and convergence of the approximation error is verified. Error estimates on the time-dependent solutions of the Gross--Pitaevskii equation and the coupled-mode equations are obtained for a finite-time interval.Comment: 32 pages, 16 figure

    Steady states of a chi-three parametric oscillator with coupled polarisations

    Full text link
    Polarisation effects in the microcavity parametric oscillator are studied using a simple model in which two chi-three optical parametric oscillators are coupled together. It is found that there are, in general, a number of steady states of the model under continuous pumping. There are both continuous and discontinuous thresholds, at which new steady-states appear as the driving intensity is increased: at the continuous thresholds, the new state has zero output intensity, whereas at the discontinuous threshold it has a finite output intensity. The discontinuous thresholds have no analog in the uncoupled device. The coupling also generates rotations of the linear polarisation of the output compared with the pump, and shifts in the output frequencies as the driving polarisation or intensity is varied. For large ratios of the interaction between polarisations to the interaction within polarisations, of the order of 5, one of the thresholds has its lowest value when the pump is elliptically polarised. This is consistent with recent experiments in which the maximum output was achieved with an elliptically polarised pump.Comment: 7 pages, 4 figure

    Keldysh Green's function approach to coherence in a non-equilibrium steady state: connecting Bose-Einstein condensation and lasing

    Full text link
    Solid state quantum condensates often differ from previous examples of condensates (such as Helium, ultra-cold atomic gases, and superconductors) in that the quasiparticles condensing have relatively short lifetimes, and so as for lasers, external pumping is required to maintain a steady state. On the other hand, compared to lasers, the quasiparticles are generally more strongly interacting, and therefore better able to thermalise. This leads to questions of how to describe such non-equilibrium condensates, and their relation to equilibrium condensates and lasers. This chapter discusses in detail how the non-equilibrium Green's function approach can be applied to the description of such a non-equilibrium condensate, in particular, a system of microcavity polaritons, driven out of equilibrium by coupling to multiple baths. By considering the steady states, and fluctuations about them, it is possible to provide a description that relates both to equilibrium condensation and to lasing, while at the same time, making clear the differences from simple lasers

    Stimulated spin dynamics of polaritons in semiconductor microcavities

    No full text
    Time-resolved polarization spectroscopy of polariton pair scattering in semiconductor microcavities enables complete measurement of the polariton spin dynamics. In addition to spin-preserving interactions previously reported, we observe two additional even stronger scattering processes, which mix polaritons of opposite spin. Because of the polaritons' bosonic character, this results in the stimulation of spin flips. Such mechanisms should allow realization of spin-sensitive interferometers
    corecore