37 research outputs found

    Spin dynamics of a trapped spin-1 Bose Gas above the Bose-Einstein transition temperature

    Full text link
    We study collective spin oscillations in a spin-1 Bose gas above the Bose-Einstein transition temperature. Starting from the Heisenberg equation of motion, we derive a kinetic equation describing the dynamics of a thermal gas with the spin-1 degree of freedom. Applying the moment method to the kinetic equation, we study spin-wave collective modes with dipole symmetry. The dipole modes in the spin-1 system are found to be classified into the three type of modes. The frequency and damping rate are obtained as functions of the peak density. The damping rate is characterized by three relaxation times associated with collisions.Comment: 19 pages, 5 figur

    Transverse Fresnel-Fizeau drag effects in strongly dispersive media

    Full text link
    A light beam normally incident upon an uniformly moving dielectric medium is in general subject to bendings due to a transverse Fresnel-Fizeau light drag effect. In conventional dielectrics, the magnitude of this bending effect is very small and hard to detect. Yet, it can be dramatically enhanced in strongly dispersive media where slow group velocities in the m/s range have been recently observed taking advantage of the electromagnetically induced transparency (EIT) effect. In addition to the usual downstream drag that takes place for positive group velocities, we predict a significant anomalous upstream drag to occur for small and negative group velocities. Furthermore, for sufficiently fast speeds of the medium, higher order dispersion terms are found to play an important role and to be responsible for peculiar effects such as light propagation along curved paths and the restoration of the spatial coherence of an incident noisy beam. The physics underlying this new class of slow-light effects is thoroughly discussed

    Slow Light in Doppler Broadened Two level Systems

    Get PDF
    We show that the propagation of light in a Doppler broadened medium can be slowed down considerably eventhough such medium exhibits very flat dispersion. The slowing down is achieved by the application of a saturating counter propagating beam that produces a hole in the inhomogeneous line shape. In atomic vapors, we calculate group indices of the order of 10^3. The calculations include all coherence effects.Comment: 6 pages, 5 figure

    Subluminal to superluminal propagation in a left-handed medium

    Get PDF
    In this paper we report large group delays in the propagation of narrow-band pulses through a dispersive medium with both dielectric function and magnetic permeability negative. We show how the numerical results can be understood in terms of the phase time as calculated from the complex transmission amplitude. We also demonstrate superluminal passage and saturation of phase time in the same material albeit in a different spectral region.Peer reviewedPhysic

    Gain-assisted superluminal light propagation through a Bose-Einstein condensate cavity system

    No full text
    The propagation of a probe laser field in a cavity optomechanical system with a Bose-Einstein condensate is studied. The transmission properties of the system are investigated and it is shown that the group velocity of the probe pulse field can be controlled by Rabi frequency of the pump laser field. The effect of the decay rate of the cavity photons on the group velocity is studied and it is demonstrated that for small values of the decay rates, the light propagation switches from subluminal to superluminal just by changing the Rabi frequency of the pump field. Then, the gain-assisted superluminal light propagation due to the cross-Kerr nonlinearity is established in cavity optomechanical system with a Bose-Einstein condensate. Such behavior can not appear in the pump-probe two-level atomic systems in the normal phase. We also find that the amplification is achieved without inversion in the population of the quantum energy levels
    corecore