18 research outputs found

    A Feasibility Study Of The Electro-recycling Of Greenhouse Gases: Design And Characterization Of A (tio 2/ruo 2)/ptfe Gas Diffusion Electrode For The Electrosynthesis Of Methanol From Methane

    No full text
    The investigation reported in this paper aims the recycling of greenhouse gases and their conversion into fuels or useful chemicals. In the present work, a (TiO 2/RuO 2)/PTFE gas diffusion electrode (GDE) was designed and characterized to be used in the electrochemical conversion of methane into methanol in conditions of simultaneous oxygen evolution. The GDE was obtained by pressing and sintering TiO 2(0. 7)/RuO 2(0. 3) powder and PTFE and used for the electrosynthesis of methanol from methane. In the experiments, methane was inserted into the reaction medium by the GDE and electrosynthesis was carried out in 0. 1 mol L -1 Na 2SO 4 supporting electrolyte. Controlled potential experiments showed that methanol concentration increased with applied potential, reaching 220 mg L -1 cm 2, at 2. 2 V vs. a calomel reference electrode and current efficiency for methanol formation was 30%. Mass spectrometry data also indicated the formation of formaldehyde and formic acid, the latter at a similar rate as that of methanol. © 2010 Springer.14224229Niyazymbetov ME, Electrochemical methods in organic chemistry of valuable intermediates, , http://www.electrosynthesis.com/news/news.html, (Watts New, 3, 1997), Accessed 18 Nov 2009Centi, G., Perathomer, S., (2009) Top Catal, 52, p. 948Benson, E.E., Kubiak, C.P., Sathrum, A.J., Smieja, J.M., (2009) Chem Soc Rev, 38, p. 89Olah, G.A., Goeppert, A., Prakash, G.K.S., (2009) J Org Chem, 74, p. 487Hamann, C.H., Hamnett, A., Vielstich, W., (1998) Electrochemistry, , NY: Wiley-VCHMoussallem, I., Jorissen, J., Kunz, U., Pinnow, S., Turek, T., (2008) J Appl Electrochem, 38, p. 1177Forti, J.C., Rocha, R.S., Lanza, M.R.V., Bertazzoli, R., (2007) J Electroanal Chem, 601, p. 63Trasatti, S., (2000) Electrochim Acta, 45, p. 2377Environmental oriented electrochemistry, p. 77. , Ch. Comninellis, in C. A. C Sequeira (Ed.), (Elsevier, Amsterdam, 1994)Fóti, G., Gandini, D., Comninellis, C., (1997) Curr Top Electrochem, 5, p. 71Simond, O., Schaller, V., Comninellis, C., (1997) Electrochim Acta, 42, p. 2009Forti, J.C., Olivi, P., de Andrade, A.R., (2001) Electrocim Acta, 47, p. 913Oliveira-Sousa, A., da Silva, M.A.S., Machado, S.A.S., Avaca, L.A., Lima-Neto, P., (2000) Electrochim Acta, 45, p. 4467Forti, J.C., Numes, J.A., Lanza, M.R.V., Bertazzoli, R., (2007) J Appl Electrochem, 37, p. 527Pelegrino, R.R.L., Vicentin, L.C., de Andrade, A.R., Bertazzoli, R., (2002) Electrochem Comn., 4, p. 13

    Electrosynthesis Of Methanol From Methane: The Role Of V2o 5 In The Reaction Selectivity For Methanol Of A Tio 2/ruo2/v2o5 Gas Diffusion Electrode

    No full text
    Methane fed TiO2/RuO2/PTFE gas diffusion electrodes (GDEs) have been used for the electrosynthesis of methanol in 0.1 mol L -1 of Na2SO4 supporting electrolyte. By-products such as formaldehyde and formic acid are usually also formed during electrolyses, with the latter formed at a similar rate as that of methanol. In this study, V2O5 was added to the composition of the GDE to improve its selectivity for methanol. TiO2/RuO2/V 2O5 powder hot-pressed with PTFE resulted in a GDE suitable for oxidative electrosynthesis with simultaneous oxygen evolution. By feeding the TiO2/RuO2/V2O5/PTFE GDE with methane, it was possible to enhance its selectivity for methanol at low values of current density. Furthermore, the formation of formic acid and formaldehyde was suppressed, allowing for higher current efficiencies. The addition of 5.6% of V2O5 increased the electrode's current efficiency to 57% at 2.0 V, which is 2-fold higher than the efficiency achieved in the absence of vanadium oxide. © 2012 Elsevier Ltd.87606610Rocha, R.S., Amargo, L.M.C., Lanza, M.R.V., Bertazzoli, R., A Feasibility Study of the Electro-recycling of Greenhouse Gases: Design and Characterization of a (TiO2/RuO2)/PTFE Gas Diffusion Electrode for the Electrosynthesis of Methanol from Methane (2010) Electrocatalysis, 1, p. 224Rocha, R.S., Lanza, M.R.V., Bertazzoli, R., Electrosynthesis of Ethylene Glycol from Oxidation of Ethylene Using a TiO2-RuO2/PTFE Gas Diffusion Electrode (2011) Electrocatalysis, 2, p. 273Fóti, G., Gandini, D., Comninellis, Ch., Anodic oxidation of organics on thermally prepared oxide electrodes (1997) Current Topics in Electrochemisty, 5, p. 71Rocha, R.S., V, M.R., Lanza, Bertazzoli, R., (2011) Electrochemical Process of Synthesis Os Alcohols Using Gas Diffusion Electrodes, , BR Patent PI 1102137-3Rocha, R.S., V, M.R., Lanza, Bertazzoli, R., (2011) Gas Diffusion Electrode, Process for Obtaining Gas Diffusion Electrodes and Their Uses, , BR Patent PI 1102984-6Sen, A., Benvenuto, M.A., Lin, M., Hutson, A.C., Basickes, N., Activation of methane and ethane and their selective oxidation to the alcohols in protic media (1994) Journal of the American Chemical Society, 116, p. 998Chen, L., Yang, B., Zhang, X., Dong, W., Cao, K., Zhang, X., Methane Oxidation over a V2O5 catalyst in the liquid phase (2006) Energy & Fuels, 20, p. 915Forti, J.C., Rocha, R.S., Lanza, M.R.V., Bertazzoli, R., Electrochemical synthesis of hydrogen peroxide on oxygen-fed graphite/PTFE electrodes modified by 2-ethylanthraquinone (2007) Journal of Electroanalytical Chemistry, 601, p. 63Galizzioli, D., Tantardini, F., Trasatti, S., Ruthenium dioxide: A new electrode material. I. Behaviour in acid solutions of inert electrolytes (1974) Journal of Applied Electrochemistry, 1, p. 57De Faria, L.A., Boodts, J.F.C., Trasatti, S., Physico-chemical and electrochemical characterization of Ru-based ternary oxides containing Ti and Ce (1992) Electrochimica Acta, 37, p. 2511Lassali, T.A.F., Boodts, J.F.C., De Castro, S.C., Landers, R., Trassati, S., UHV and electrochemical studies of the surface properties of Ru+Pt+Ti mixed oxide electrodes (1994) Electrochimica Acta, 39, p. 95Pelegrino, R.R.L., Vicentin, L.C., De Andrade, A.R., Bertazzoli, R., Thirty minutes laser calcination method for the preparation of DSA® type oxide electrodes (2002) Electrochemistry Communications, 4, p. 139Liu, A., Ichihara, M., Honma, I., Zhou, H., Vanadium-oxide nanotubes: Synthesis and template-related electrochemical properties (2007) Electrochemistry Communications, 9, p. 1766Guerra, E., Ciuffi, K.J., Oliveira, H.P., V2O5 xerogel-poly(ethylene oxide) hybrid material: Synthesis, characterization, and electrochemical properties (2006) Journal of Solid State Chemistry, 179, p. 381

    Study Of The Ranitidine Degradation By H2o2 Electrogenerated/fenton In A Electrochemical Reactor With Gas Diffusion Electrode [estudo Da Degradação De Ranitidina Via H2o 2 Eletrogerado/fenton Em Um Reator Eletroquímico Com Eletrodos De Difusão Gasosa]

    No full text
    The study of the electrochemical degradation of the ranitidine was developed using an electrochemical reactor with a gas diffusion electrode (GDE) as cathode. The electrolysis experiments was performed at constant current (1 ≤ A ≤ 10) and flow rate of 200 L h-1. The process of drug degradation, chemical/electrochemical and electro-Fenton ways, using electrochemical reactor showed best efficiency at current values of ≥ 4 A. The process reached a production of 630 mg L-1 of the H 2O2 at 7 A. The ranitidine concentrations was reduced in 99.9% (HPLC) and chemical oxygen demand (COD) was reduced in 86.7% by electio-Fenton.321125130Stumpf, M., Ternes, T.A., Wilken, R., Rodrigues, S.V., Baumann, W., (1999) Sci. Total Environ, 225, p. 135Ternes, T.A., (1998) Water Res, 32, p. 3245Ternes, T.A., Stumpf, M., Mueller, J., Haberer, K., Wilken, R.-D., Servos, M., (1999) Sci. Total Environ, 225, p. 81Bower, C.K., Daeschel, M.A., (1999) Int. J. Food Microbiol, 50, p. 33Guardabassi, L., Wong, D.M.A.L., Dalsgaard, A., (2002) Water Res, 36, p. 1955Guillemot, D., (1999) Curr. Opin. Microbiol, 2, p. 494Mckeon, D.M., Calabrese, J.P., Bissonnette, G.K., (1995) Water Res, 29, p. 1902Miranda, C.D., Castillo, G., (1998) Sci. Total Environ, 224, p. 167Bila, D.M., Dezotti, M., (2003) Quim. Nova, 26, p. 523Braue, P.M., Cavalcanti, J.E.W.A., (1993) Manual de Tratamento de Águas Residuárias Industrials, , CETESB: São PauloTicianelli, E.A., Gonzalez, E.R., (2005) Eletroquímica: Princípios e Aplicações, , 2a ed, São PauloHarris, D.C., (2001) Análise Química Quantitativa, , 5 a ed, Rio de JaneiroAmadelli, R., Bonato, T., De Battisti, A., Velichenko, A., (1998) Proc. Electrochem .Soc, 97, p. 28Pletcher, D., Ponce, D.L., (1995) J. Appl. Electrochem, 25, p. 307Nogueira, R.F.P., Trovó, A.G., Silva, M.R.A., Villa, R.D., (2007) Quim. Nova, 30, p. 400Forti, J.C., Nunes, J.A., Lanza, M.R.V., Bertazzoli, R., (2007) J. Appl. Electrochem, 37, p. 527Forti, J.C., Rocha, R.S., Lanza, M.R.Y., Bertazzoli, R., (2007) J. Electroanal. Chem, 63, p. 601Harrington, T., Pletcher, D., (1999) J. Electrochem. Soc, 8, p. 146Florey, K., (1986) Analitical Profiles of Drug Substances, , Academic Press: New YorkFranson, M.A.H., (2005) Standardmethods for the examination of water & wastewater, , 21st ed, Contennnial Edition: Waashingto

    Electrochemical Characterization Of Dsa®-type Electrodes Using Niobium Substrate

    No full text
    This paper describes the electrochemical characterization of DSA®-type electrodes using niobium substrate, and the results were compared with traditional DSA®-type oxide electrodes, i. e., using titanium substrate. The surface morphology, electrocatalytic activity, and stability of the coating were investigated by scanning electron microscopy, energy dispersive X-ray spectrometry, cyclic voltammetry, electrochemical impedance spectroscopy (EIS), and lifetime tests. EIS measurements were recorded at a constant potential between 0. 2 and 1. 0 V vs Ag/AgCl, in the frequency range of 5 mHz to 100 kHz, using the "single sine" method and a sine wave amplitude of 5 mV (p/p). After testing a number of different equivalent circuits, we found that the whole set of data in the double layer domain of the electrodes can be fitted by assuming the circuits R s(CPE fR f)(C dlR ct), R s(CPE fR f)(CPE dlR ct), and R sCPE fG(CPE dlR ct). The results suggest the formation of a less conducting film on the Nb substrate when compared to Ti substrate. The findings of this work, such as difficult adherence of coating on niobium, reduction of voltammetric charge, and short lifetime of electrodes prepared on Nb substrate, suggest that the substitution of titanium by niobium is unfeasible. © 2010 Springer.12-3129138Trasatti, S., Lodi, G., (1981) Electrodes of Conductive Metallic Oxides, Part B, , S. Trasatti (Ed.), Amsterdam: ElsevierSantana, M.H.P., de Faria, L.A., Boodts, J.F.C., (2004) Electrochim Acta, 49 (12), p. 1925Ma, H., Liu, C., Liao, J., Su, Y., Xue, X., Xing, W., (2006) J Mol Catal, 247 (1-2), p. 7Forti, J.C., Olivi, P., de Andrade, A.R., (2003) J Electrochem Soc, 150 (4), pp. E222Comninellis, C., de Battisti, A., (1996) J Chim Phys, 93, p. 673Kim, J.W., Park, S.M., (1999) J Eletrochem Soc, 146, p. 1075Rajkumar, D., Byung, J.S., Kim, J.G., (2007) Dyes Pigm, 72 (1), p. 1Pinheiro, L., Pelegrini, R., Bertazzoli, R., Motheo, A.J., (2005) Appl Catal B: Environ, 57 (2), p. 75Malpass, G.R.P., Miwa, D.W., Machado, S.A.S., Olivi, P., Motheo, A.J., (2006) J Hazard Mater, 137 (1), p. 565Alves, P.D.P., Spagnol, M., Tremiliosi-Filho, G., de Andrade, A.R., (2004) J Braz Chem Soc, 15 (5), p. 626Moust, C., Foti, G., Comninellis, C., Reid, V., (1999) Electrochim Acta, 45, p. 451Forti, J.C., Olivi, P., de Andrade, A.R., (2001) Electrochim Acta, 47, p. 913de Nora, O., (1971) Chem Ing Tech, 43, p. 182Horacek, J., Puschaver, S., (1971) Chem Eng Prog, 67, p. 71Koziol, K.R., Rathjen, H.C., Wenk, E.F., Fischer, A.W., (1978) J Electrochem Soc, 123, p. 163Trasatti, S., (2000) Electrochim Acta, 45, p. 2377Vercesi, G.P., Rolewicz, J., Comninellis, C., Hiden, J., (1991) Thermochim Acta, 176, p. 31Dekker, M., (1974) Encyclopedia of electrochemistry of the elements, II, pp. 53-123. , In: Bard AJ (ed). Marcell Dekker, New York(2000) Área de Operações Industriais, p. 2. , Mineração e Metalurgia, n o 32, Gerência Setorial 3, abril deSamet, Y., Elaoud, S.C., Ammar, S., Abdelhedi, R., (2006) J Hazard Mater, B138, p. 614Motheo, A.J., Gonzalez, E.R., Tremiliosi-Filho, G., Olivi, P., de Andrade, A.R., Kokoh, K.B., Leger, J.-M., Lamy, C., (2000) J Braz Chem Soc, 11 (1), p. 16Ardizzone, S., Fregonara, G., Trasatti, S., (1990) Electrochimica Acta, 35 (1), p. 263Trasatti, S., Kurwell, P., (1994) Platinum Metals Review, 38 (2), p. 46Burke, L.D., Murphy, O.J., (1979) J Electroanal Chem, 96, p. 19Terezo, A.J., Pereira, E.C., (1999) Electrochim Acta, 44, p. 4507Tilak, B.V., Birss, V.I., Wang, J., Chen, C.P., Rangarajan, S.K., (2001) J Electrochem Soc, 148, p. 112Sugimoto, W., Iwata, H., Yokoshima, K., Murakami, Y., Takasu, Y., (2005) J Phys Chem B, 109, p. 7330de Carvalho, L.A., de Andrade, A.R., Bueno, P.R., (2006) Quim Nova, 29, p. 786Terezo, A.J., Bisquert, J., Pereira, E.C., Garcia-Belmonte, G., (2001) J Electroanal Chem, 508, p. 59Horvat-Radosevic, V., Kvastek, K., Vukovic, M., Marijan, D., (1999) J Electroanal Chem, 463, p. 29Lasia, A., (1995) J Electroanal Chem, 397, p. 27Gerischer, H., (1951) Z Phys Chem, 198, p. 216Smith, D.E., (1970) Electroanalytical Chemistry, 1, pp. 44-69. , A. J. Bard (Ed.), New York: Marcel DekkerBoukamp, B.A., Bouwmeester, H.J.M., (2003) Solid State Ionics, 157, p. 29Ribeiro, J., de Andrade, A.R., (2006) J Electroanal Chem, 592, p. 153Beck, F., (1989) Electrochim Acta, 34, p. 811Martelli, G.N., Ornelas, R., Faita, G., (1994) Electrochim Acta, 32, p. 1551Jovanovic, V.M., Dekanski, A., Despotov, P., Nikolic, B.Z., Atanasoski, R.T., (1992) J Electroanal Chem, 339, p. 147Panic, V.V., Dekanski, A., Milonjic, S.K., Atanasoski, R.T., Nilolic, B.Z., (1999) Colloids Surf, A157, p. 269Loucka, T., (1977) J Appl Electrochem, 7, p. 211Iwakura, C., Sakamoto, K., (1985) J Electrochem Soc, 132 (10), p. 242

    Hydrogen peroxide electrogeneration in gas diffusion electrode nanostructured with Ta2O5

    No full text
    Highly efficient H2O2 electrogeneration is required in the Advanced Oxidation Process for organic wastewater treatment. However, the development of more efficient catalytic particles used in gas diffusion electrodes (GDEs) to enable the oxygen reduction reaction through two-electron transfer is still of great importance. The performance of the Ta2O5 nanoparticles on carbon black in catalyzing the ORR was evaluated using rotating ring-disk electrode. The current efficiency for H2O2 electrogeneration on Ta2O5/C catalyst is 83.2% whereas carbon black exhibits 65.3%. GDEs were constructed using carbon black either unmodified or modified with Ta2O5 nanoparticles. The modified GDE produces 27.9 mg L−1 of H2O2, while the unmodified GDE generates 19.1 mg L−1 of H2O2. Furthermore, the energy consumption for the H2O2 electrogeneration is lower in modified than in unmodified GDE (15.0 kW h vs. 18.8 kW h). The high performance of the GDE (Ta2O5/C) renders it a viable alternative cathode in the electrochemical treatment of wastewaters517161167CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP163689/2015-6; 160507/2011-1; 143345/2011-7; 470079/2013-4Não tem2011/14314-

    Development And Evaluation Of Gas Diffusion Electrodes (gde) For Generation Of H2o2 In Situ And Their Application In The Degradation Of Reactive Blue 19 Dye [desenvolvimento E Avaliação De Eletrodos De Difusão Gasosa (edg) Para Geração De H2o2 In Situ E Sua Aplicação Na Degradação Do Corante Reativo Azul 19]

    No full text
    This work reports the development of GDE for electrogeneration of H 2O2 and their application in the degradation process of Reactive Blue 19 dye. GDE produced by carbon black with 20% polytetrafluoroethylene generated up to 500 mg L-1 of H 2O2 through the electrolysis of acidic medium at -0.8 V vs Ag/AgCl. Reactive Blue 19 dye was degraded most efficiently with H 2O2 electrogenerated in the presence of Fe(II) ions, leading to removal of 95% of the original color and 39% of TOC at -0.8 V vs Ag/AgCl.351019611966Amadelli, R., Bonato, T., De Battisti, A., Velichenko, A., Babak, A., (1998) Proceedings of the Symposium on Energy An Electrochemical Processing for A Cleaner Environment;, , Walton, C. W.Rudd, E. J., eds.The Electrochemical Society: New Jersey, chap. 6Baloch, M., (2011) Water Environ. J., 25, p. 171Hirvonen, A., Tuhkanen, T., Kalliokoski, P., (1996) Water Sci. Technol., 33, p. 67Lopez, A., Bozzi, A., Mascolo, G., Kiwi, J., (2003) J. Photochem. Photobiol., 156, p. 121Le, C., Wu, J.-H., Li, P., Wang, X., Zhu, N.-W., Wu, P.-X., Yang, B., (2011) Water Sci. Technol., 64, p. 754Ho, C.-H., Chen, L., Yang, C.-L., (2011) Environ. Eng. Sci., 28, p. 53Petrucci, E., Montanaro, D., (2011) Chem. Eng. J., 174, p. 612Reis, R.M., Betai, A.A.G.F., Rocha, R.S., Assumpção, M.H.M.T., Santos, M.C., Bertazzoli, R., Lanza, M.R.V., (2012) Ind. Eng. Chem. Res., 51, p. 649Comninellis, C., (1994) Electrochim. Acta, 39, p. 1857Ragnini, C.A.R., Di Iglia, R.A., Bertazzoli, R., (2001) Quim. Nova, 24, p. 252Brillas, E., Batista, R.M., Llosa, E., Casado, J., (1995) J. Electrochem. Soc., 142, p. 1733Brillas, E., Mur, E., Casado, J., (1996) J. Electrochem. Soc., 143, pp. L49Guinea, E., Arias, C., Cabot, C.A., Garrido, J.A., Rodríguez, R.M., Centellas, F., Brillas, E., (2008) Water Res, 42, p. 499Guinea, E., Garrido, J.A., Rodríguez, E.M., Cabot, P.-L., Arias, C., Centellas, F., Brillas, E., (2010) Electrochim. Acta, 55, p. 2101Gallegos-Alverez, A., Pletcher, D., (1999) Electrochim. Acta, 44, p. 2483Thevenet, F., Couble, J., Bradhorst, M., Dubois, J.L.E., Puzenat, E., Guillard, C., Bianchi, D., (2010) Plasma Chem. Plasma Process, 30, p. 489Teranishi, M., Naya, S., Tada, H., (2010) J. Am. Chem. Soc., 132, p. 7850Nomura, Y., Ishihara, T., Hata, Y., Kitawaki, K., Kaneko, K., Matsumoto, H., (2008) Chem. Sus. Chem., 1, p. 619Fu, L., You, S., Yang, F., Ming-Ming, G., Fang, X., Zhang, G., (2010) J. Chem. Technol. Biotechnol., 85, p. 715Beati, A.G.F., Rocha, R.S., Oliveira, J.G., Lanza, M.R.V., (2009) Quim. Nova, 32, p. 125Forti, J.C., Nunes, J.A., Lanza, M.R.V., Bertazzoli, R., (2007) J. Appl. Electrochem., 37, p. 527Forti, J.C., Rocha, R.S., Lanza, M.R.V., Bertazzoli, R., (2007) J. Electroanal. Chem., 601, p. 63Harrington, T., Pletcher, D., (1999) J. Electrochem. Soc., 146, p. 2983Ticianelli, E., Camara, G., Santos, L., (2005) Quim. Nova, 28, p. 664Guillet, N., Roué, L., Marcotte, S., Villers, D., Dodelet, J., Chhim, N., Trévin, S., (2006) J. Appl. Electrochem., 36, p. 863Alonso-Vante, N., Tributsch, H., Solorza-Feria, O., (1995) Electrochim. Acta, 40, p. 567Jakobs, R., Janssen, L., Barendrecht, E., (1995) Electrochim. Acta, 30, p. 1085Yamanaka, I., Hashimoto, T., Ichihashi, R., Otsuka, K., (2008) Electrochim. Acta, 53, p. 4824Catanho, M., Malpass, G.R.P., Motheo, A.J., (2006) Quim. Nova, 29, p. 983Gözmen, B., Kayan, B., Gizir, A.M., Hesenov, A., (2009) J. Hazard. Mater., 168, p. 129Song, S., Yao, J., He, Z., Qiu, J., Chen, J., (2008) J. Hazard. Mater., 152, p. 204Raghu, S., Leeb, C.W., Chellammal, S., Palanichamy, S., Basha, C.A., (2009) J. Hazard. Mater., 171, p. 748Chang, S.-H., Chuang, S.-H., Li, H.-C., Liang, H.-H., Huang, L.-C., (2009) J. Hazard. Mater., 166, p. 1279Ozcan, A., Sahin, Y., Koparal, A.S., Oturan, M.A., (2008) J. Electroanal. Chem., 616, p. 71Sheng, Y., Song, S., Wang, X., Song, L., Wang, C., Sun, H., Niu, X., (2011) Electrochim. Acta, 56, p. 8651He, Z., Lin, L., Song, S., Xia, M., Xu, L., Ying, H., (2008) Chen J. Sep. Purif. Technol., 62, p. 376El-Desoky, H.S., Ghoneim, M.M., El-Sheikh, R., Zidan, N.M., (2010) J. Hazard Mater., 175, p. 858Paterlini, W.C., Nogueira, R.F.P., (2005) Chemosphere, 58, p. 1107Nogueria, R.F.P., Trovó, A.G., Silva, M.R.A., Villa, R.D., Oliveira, M.C., (2007) Quim. Nova, 30, p. 400Torrados, F., Pérez, M., Mansilla, H.D., Peral, J., (2003) Chemosphere, 53, p. 121

    Electrochemical Degradation Of The Chloramphenicol At Flow Reactor. [degradação Eletroquímica Do Cloranfenicol Em Reator De Fluxo]

    No full text
    This paper reports a study of electrochemical degradation of the chloramphenicol antibiotic in aqueous medium using a flow-by reactor with DSA® anode. The process efficiency was monitored by chloramphenicol concentration analysis with liquid chromatography (HPLC) during the experiments. Analysis of Total Organic Carbon (TOC) was performed to estimate the degradation degree and Ion Chromatography (IC) was performed to determinate inorganic ions formed during the eletrochemical degradation process. In electrochemical flow-by reactor, 52% of chloramphenicol was degraded, with 12% TOC reduction. IC analysis showed the production of chloride ions (25 mg L -1), nitrate ions (6 mg L-1) and nitrite ions (4.5 mg L-1).33510881092Bila, D.M., Desotti, M., (2003) Quim. Nova, 26, p. 523Mispagel, H., Gray, J.T., (2005) Water Environ.Res, 77, p. 2996Peng, X., Wang, Z., Kuang, W., Tan, J., Li, K., (2006) Sci. Total Environ, 371, p. 314Peng, X., Tan, J., Tang, C., Yu, Y., Wang, Z., (2008) Environ. Toxicol. Chem, 27, p. 73Zeegers, F., Gibella, M., Tilquin, B., (1997) Radiat. Phys. Chem, 50, p. 149Chatzitakis, A., Berberidou, C., Paspaltsis, I., Kyriakou, G., Sklaviadis, T., Poulios, I., (2008) Water Res, 42, p. 386Di Bernardo, L., Dantas, A.D.B., (2005) Métodos e Técnicas de Tratamento de água, , 2a ed., Rima: São PauloFaria, L.A., Boodts, J.F.C., Trassati, S., (1992) Electrochim. Acta, 37, p. 2511Comninellis, Ch., Sequeira, C.A.C., (1994) Environmental Oriented Electrochemistry, 77Forti, G., Gandini, D., Comninellis, Ch., (1997) Curr. Top. Electrochem, 5, p. 71Simond, O., Schaller, V., Comninellis, Ch., (1997) Electrochim. Acta, 42, p. 2009Trassati, S., (2000) Electrochim. Acta, 45, p. 2377Comninellis, Ch., (1994) Electrochim. Acta, 39, p. 1857Rocha, R.S., Beati, A.A.G.F., Oliveira, J.G., Lanza, M.R.V., (2009) Quim. Nova, 32, p. 354Beati, A.A.G.F., Rocha, R.S., Oliveira, J.G., Lanza, M.R.V., (2009) Quim. Nova, 32, p. 125(1942) The Pharmacopeia of the United States of America, p. 373. , Mack Printing: EastonForti, J.C., Rocha, R.S., Lanza, M.R.V., Bertazzoli, R., (2007) J. Electroanal. Chem, 601, p. 63Forti, J.C., Nunes, J.A., Lanza, M.R.V., Bertazzoli, R., (2007) J. Appl. Electrochem, 37, p. 527Solomons, T.W.G., (2006) Química Orgǎnica, 2. , 8a ed.,Livros Técnicos e Científicos: Rio de Janeir
    corecore