64 research outputs found
Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs
Substance abuse and addiction are the most costly of all the neuropsychiatric disorders. In the last decades, much progress has been achieved in understanding the effects of the drugs of abuse in the brain. However, efficient treatments that prevent relapse have not been developed. Drug addiction is now considered a brain disease, because the abuse of drugs affects several brain functions. Neurological impairments observed in drug addicts may reflect drug-induced neuronal dysfunction and neurotoxicity. The drugs of abuse directly or indirectly affect neurotransmitter systems, particularly dopaminergic and glutamatergic neurons. This review explores the literature reporting cellular and molecular alterations reflecting the cytotoxicity induced by amphetamines, cocaine and opiates in neuronal systems. The neurotoxic effects of drugs of abuse are often associated with oxidative stress, mitochondrial dysfunction, apoptosis and inhibition of neurogenesis, among other mechanisms. Understanding the mechanisms that underlie brain dysfunction observed in drug-addicted individuals may contribute to improve the treatment of drug addiction, which may have social and economic consequences.http://www.sciencedirect.com/science/article/B6SYS-4S50K2J-1/1/7d11c902193bfa3f1f57030572f7034
The High-Resolution Solar Reference Spectrum between 250 and 550 nm and its Application to Measurements with the Ozone Monitoring Instrument
Formation of a square-planar Co(I) B12 intermediate. Implications for enzyme catalysis
X-ray edge and extended x-ray absorption fine structure (EXAFS) techniques provide powerful tools for analysis of local molecular structure of complexes in solution. We present EXAFS results for Co(I) B12 that demonstrate a four-coordinate (distorted) square-planar configuration. Comparison of EXAFS solutions for Co(I) and Co(II) B12 (collected previously; Sagi et al. 1990. J. Am. Chem. Soc. 112:8639–8644) suggest that modulation of the Co-N bond to the axial 5,6-dimethylbenzimidazole (DMB), in the absence of changes in Co-N (equatorial) bond distances, may be a key mechanism in promoting homolytic versus heterolytic cleavage. As Co-C bond homolysis occurs, the Co-N (DMB) bond becomes stronger. However, for heterolytic cleavage to occur, earlier electrochemical studies (D. Lexa and J. M. Saveant. 1976. J. Am. Chem. Soc. 98:2652–2658) and recent studies of methylcobalamin-dependent Clostridium thermoaceticum (Ragsdale et al. 1987. J. Biol. Chem. 262:14289–14297) suggest that removal of the DMB ligand (before Co-C bond cleavage) favors formation of the four-coordinate square-planar Co(I) species while inhibiting formation of the five-coordinate Co(II) B12 complex. This paper presents the first direct evidence that formation of the Co(I) B12 intermediate must involve breaking of the Co-N (DMB) bond
Crystal structure of Clostridium acetobutylicum aspartate kinase (CaAK): An important allosteric enzyme for industrial amino acids production
Investigations of Cake Fouling During the Cross-Flow Microfiltration of a Model Suspension: Influence of Buoyancy on Deposition and Shear-Induced Removal
Crystal Structure of Escherichia coli L-arabinose Isomerase (ECAI) complexed with Ribitol
Crystal Structure of Nicotiana tabacum malonyltransferase (NtMat1) complexed with malonyl-coa
- …
