20 research outputs found

    Nonlinear interference in a mean-field quantum model

    Full text link
    Using similar nonlinear stationary mean-field models for Bose-Einstein Condensation of cold atoms and interacting electrons in a Quantum Dot, we propose to describe the original many-particle ground state as a one-particle statistical mixed state of the nonlinear eigenstates whose weights are provided by the eigenstate non-orthogonality. We search for physical grounds in the interpretation of our two main results, namely, quantum-classical nonlinear transition and interference between nonlinear eigenstates.Comment: RevTeX (pdfLaTeX), 7 pages with 5 png-figures include

    Theory of a Higher Order Phase Transition: Superconducting Transition in BKBO

    Full text link
    We describe here the properties expected of a higher (with emphasis on the order fourth) order phase transition. The order is identified in the sense first noted by Ehrenfest, namely in terms of the temperature dependence of the ordered state free energy near the phase boundary. We have derived an equation for the phase boundary in terms of the discontinuities in thermodynamic observables, developed a Ginzburg-Landau free energy and studied the thermodynamic and magnetic properties. We also discuss the current status of experiments on Ba0.6K0.4BiO3Ba_{0.6}K_{0.4}BiO_3 and other BiO3BiO_3 based superconductors, the expectations for parameters and examine alternative explanations of the experimental results.Comment: 18 pages, no figure

    Quasicondensate and superfluid fraction in the 2D charged-boson gas at finite temperature

    Full text link
    The Bogoliubov - de Gennes equations are solved for the Coulomb Bose gas describing a fluid of charged bosons at finite temperature. The approach is applicable in the weak coupling regime and the extent of its quantitative usefulness is tested in the three-dimensional fluid, for which diffusion Monte Carlo data are available on the condensate fraction at zero temperature. The one-body density matrix is then evaluated by the same approach for the two-dimensional fluid with e^2/r interactions, to demonstrate the presence of a quasi-condensate from its power-law decay with increasing distance and to evaluate the superfluid fraction as a function of temperature at weak coupling.Comment: 9 pages, 2 figure

    Effect of screening of the electron-phonon interaction on the temperature of Bose-Einstein condensation of intersite bipolarons

    Full text link
    Here we consider an interacting electron-phonon system within the framework of extended Holstein-Hubbard model at strong enough electron-phonon interaction limit in which (bi)polarons are the essential quasiparticles of the system. It is assumed that the electron-phonon interaction is screened and its potential has Yukawa-type analytical form. An effect of screening of the electron-phonon interaction on the temperature of Bose-Einstein condensation of the intersite bipolarons is studied for the first time. It is revealed that the temperature of Bose-Einstein condensation of intersite bipolarons is higher in the system with the more screened electron-phonon interaction.Comment: 6 pages, 4 figure

    Spontaneous Magnetization of the O(3) Ferromagnet at Low Temperatures

    Full text link
    We investigate the low-temperature behavior of ferromagnets with a spontaneously broken symmetry O(3) \to O(2). The analysis is performed within the perspective of nonrelativistic effective Lagrangians, where the dynamics of the system is formulated in terms of Goldstone bosons. Unlike in a Lorentz-invariant framework (chiral perturbation theory), where loop graphs are suppressed by two powers of momentum, loops involving ferromagnetic spin waves are suppressed by three momentum powers. The leading coefficients of the low-temperature expansion for the partition function are calculated up to order p10p^{10}. In agreement with Dyson's pioneering microscopic analysis of the cubic ferromagnet, we find that, in the spontaneous magnetization, the magnon-magnon interaction starts manifesting itself only at order T4T^4. The striking difference with respect to the low-temperature properties of the O(3) antiferromagnet is discussed from a unified point of view, relying on the effective Lagrangian technique.Comment: 23 pages, 4 figure

    The Free Energy of the Quantum Heisenberg Ferromagnet at Large Spin

    Full text link
    We consider the spin-S ferromagnetic Heisenberg model in three dimensions, in the absence of an external field. Spin wave theory suggests that in a suitable temperature regime the system behaves effectively as a system of non-interacting bosons (magnons). We prove this fact at the level of the specific free energy: if S S \to \infty and the inverse temperature β0 \beta \to 0 in such a way that βS \beta S stays constant, we rigorously show that the free energy per unit volume converges to the one suggested by spin wave theory. The proof is based on the localization of the system in small boxes and on upper and lower bounds on the local free energy, and it also provides explicit error bounds on the remainder.Comment: 11 pages, pdfLate

    Theory of the charged Bose gas: Bose-Einstein condensation in an ultrahigh magnetic field

    Get PDF
    This article was published in the journal, Physical Review B [© American Physical Society]. It is also available at: http://link.aps.org/abstract/PRB/v54/p15363.The Bogoliubov-de Gennes equations and the Ginzburg-Landau-Abrikosov-Gor'kov-type theory are formulated for the charged Bose gas (CBG). The theory of the Bose-Einstein condensation of the CBG in a magnetic field is extended to ultralow temperatures and ultrahigh magnetic fields. A low-temperature dependence of the upper critical field Hc2(T) is obtained both for the particle-impurity and particle-particle scattering. The normal-state collective plasmon mode in ultrahigh magnetic fields is studied

    The orbital susceptibility of the neutral Hubbard model

    No full text
    corecore