87 research outputs found
On D0-branes in Gepner models
We show why and when D0-branes at the Gepner point of Calabi-Yau manifolds
given as Fermat hypersurfaces exist.Comment: 22 pages, substantial improvements in sections 2 and 3, references
added, version to be publishe
Structure and structure relaxation
A discrete--dynamics model, which is specified solely in terms of the
system's equilibrium structure, is defined for the density correlators of a
simple fluid. This model yields results for the evolution of glassy dynamics
which are identical with the ones obtained from the mode-coupling theory for
ideal liquid--glass transitions. The decay of density fluctuations outside the
transient regime is shown to be given by a superposition of Debye processes.
The concept of structural relaxation is given a precise meaning. It is proven
that the long-time part of the mode-coupling-theory solutions is structural
relaxation, while the transient motion merely determines an overall time scale
for the glassy dynamics
Orientifolds of Gepner Models
We systematically construct and study Type II Orientifolds based on Gepner
models which have N=1 supersymmetry in 3+1 dimensions. We classify the parity
symmetries and construct the crosscap states. We write down the conditions that
a configuration of rational branes must satisfy for consistency (tadpole
cancellation and rank constraints) and spacetime supersymmetry. For certain
cases, including Type IIB orientifolds of the quintic and a two parameter
model, one can find all solutions in this class. Depending on the parity, the
number of vacua can be large, of the order of 10^{10}-10^{13}. For other
models, it is hard to find all solutions but special solutions can be found --
some of them are chiral. We also make comparison with the large volume regime
and obtain a perfect match. Through this study, we find a number of new
features of Type II orientifolds, including the structure of moduli space and
the change in the type of O-planes under navigation through non-geometric
phases.Comment: 142 page
Fractional Branes in Non-compact Type IIA Orientifolds
We study fractional D-branes in the Type-IIA theory on a non-compact
orientifold of the orbifold C^3/Z_3 in the boundary state formalism. We find
that the fractional D0-branes of the orbifold theory become unstable due to the
presence of a tachyon, while there is a stable D-instanton whose tachyon gets
projected out. We propose that the D-instanton is obtained after tachyon
condensation. We evidence this by calculating the Whitehead group of the
Abelian category of objects corresponding to the boundary states as being
isomorphic to Z_2.Comment: 29 pages, Latex2e minor corrections. references updated. Version
accepted in JHE
The BPS Spectrum of N=2 SU(N) SYM and Parton Branes
We apply ideas that have appeared in the study of D-branes on Calabi-Yau
compactifications to the derivation of the BPS spectrum of field theories. In
particular, we identify an orbifold point whose fractional branes can be
thought of as ``partons'' of the BPS spectrum of N=2 pure SU(N) SYM. We derive
the BPS spectrum and lines of marginal stability branes near that orbifold, and
compare our results with the spectrum of the field theories.Comment: 29 pages, 4 figures, includes package diagrams.tex by Paul Taylo
Linear Sigma Models for Open Strings
We formulate and study a class of massive N=2 supersymmetric gauge field
theories coupled to boundary degrees of freedom on the strip. For some values
of the parameters, the infrared limits of these theories can be interpreted as
open string sigma models describing D-branes in large-radius Calabi-Yau
compactifications. For other values of the parameters, these theories flow to
CFTs describing branes in more exotic, non-geometric phases of the Calabi-Yau
moduli space such as the Landau-Ginzburg orbifold phase. Some simple properties
of the branes (like large radius monodromies and spectra of worldvolume
excitations) can be computed in our model. We also provide simple worldsheet
models of the transitions which occur at loci of marginal stability, and of
Higgs-Coulomb transitions.Comment: 51 pages, 2 figures; very minor corrections, refs adde
Dibaryons from Exceptional Collections
We discuss aspects of the dictionary between brane configurations in del
Pezzo geometries and dibaryons in the dual superconformal quiver gauge
theories. The basis of fractional branes defining the quiver theory at the
singularity has a K-theoretic dual exceptional collection of bundles which can
be used to read off the spectrum of dibaryons in the weakly curved dual
geometry. Our prescription identifies the R-charge R and all baryonic U(1)
charges Q_I with divisors in the del Pezzo surface without any Weyl group
ambiguity. As one application of the correspondence, we identify the cubic
anomaly tr R Q_I Q_J as an intersection product for dibaryon charges in large-N
superconformal gauge theories. Examples can be given for all del Pezzo surfaces
using three- and four-block exceptional collections. Markov-type equations
enforce consistency among anomaly equations for three-block collections.Comment: 47 pages, 11 figures, corrected ref
Fractional two-branes, toric orbifolds and the quantum McKay correspondence
We systematically study and obtain the large-volume analogues of fractional
two-branes on resolutions of orbifolds C^3/Z_n. We study a generalisation of
the McKay correspondence proposed in hep-th/0504164 called the quantum McKay
correspondence by constructing duals to the fractional two-branes. Details are
explicitly worked out for two examples -- the crepant resolutions of C^3/Z_3
and C^3/Z_5.Comment: 34 pages, 2 figures, LaTeX (JHEP3 style); (v2) typos corrected; (v3)
sec 3 reorganise
A proteomics-based assessment of inflammation signatures in endotoxemia
We have previously shown that multimers of plasma pentraxin-3 (PTX3) were predictive of survival in patients with sepsis. To characterize the release kinetics and cellular source of plasma protein changes in sepsis, serial samples were obtained from healthy volunteers (n = 10; three time points) injected with low-dose endotoxin (lipopolysaccharide [LPS]) and analyzed using data-independent acquisition MS. The human plasma proteome response was compared with an LPS-induced endotoxemia model in mice. Proteomic analysis of human plasma revealed a rapid neutrophil degranulation signature, followed by a rise in acute phase proteins. Changes in circulating PTX3 correlated with increases in neutrophil-derived proteins following LPS injection. Time course analysis of the plasma proteome in mice showed a time-dependent increase in multimeric PTX3, alongside increases in neutrophil-derived myeloperoxidase (MPO) upon LPS treatment. The mechanisms of oxidation-induced multimerization of PTX3 were explored in two genetic mouse models: MPO global knock-out (KO) mice and LysM Cre Nox2 KO mice, in which NADPH oxidase 2 (Nox2) is only deficient in myeloid cells. Nox2 is the enzyme responsible for the oxidative burst in neutrophils. Increases in plasma multimeric PTX3 were not significantly different between wildtype and MPO or LysM Cre Nox2 KO mice. Thus, PTX3 may already be stored and released in a multimeric form. Through in vivo neutrophil depletion and multiplexed vascular proteomics, PTX3 multimer deposition within the aorta was confirmed to be neutrophil dependent. Proteomic analysis of aortas from LPS-injected mice returned PTX3 as the most upregulated protein, where multimeric PTX3 was deposited as early as 2 h post-LPS along with other neutrophil-derived proteins. In conclusion, the rise in multimeric PTX3 upon LPS injection correlates with neutrophil-related protein changes in plasma and aortas. MPO and myeloid Nox2 are not required for the multimerization of PTX3; instead, neutrophil extravasation is responsible for the LPS-induced deposition of multimeric PTX3 in the aorta
Open-closed string correspondence: D-brane decay in curved space
This paper analyzes the effect of curved closed string backgrounds on the
stability of D-branes within boundary string field theory. We identify the
non-local open string background that implements shifts in the closed string
background and analyze the tachyonic sector off-shell. The renormalization
group flow reveals some characteristic properties, which are expected for a
curved background, like the absence of a stable space-filling brane. In
3-dimensions we describe tachyon condensation processes to lower-dimensional
branes, including a curved 2-dimensional brane. We argue that this 2-brane is
perturbatively stable. This is in agreement with the known maximally symmetric
WZW-branes and provides further support to the bulk-boundary factorization
approach to open-closed string correspondence.Comment: 23 pages, harvma
- …