7 research outputs found

    Implementing Fine/Medium Grained TLP Support in a Many-Core Architecture

    Get PDF
    Abstract. We believe that future many-core architectures should support a simple and scalable way to execute many threads that are generated by parallel programs. A good candidate to implement an efficient and scalable execution of threads is the DTA (Decoupled Threaded Architecture), which is designed to exploit fine/medium grained Thread Level Parallelism (TLP) by using a hardware scheduling unit and relying on existing simple cores. In this paper, we present an initial implementation of DTA concept in a many-core architecture where it interacts with other architectural components designed from scratch in order to address the problem of scalability. We present initial results that show the scalability of the solution that were obtained using a many-core simulator written in SARCSim (a variant of UNISIM) with DTA support

    Software countermeasures for control flow integrity of smart card C codes

    Get PDF
    International audienceFault attacks can target smart card programs in order to disrupt an execution and gain an advantage over the data or the embedded functionalities. Among all possible attacks, control flow attacks aim at disrupting the normal execution flow. Identifying harmful control flow attacks as well as designing countermeasures at software level are tedious and tricky for developers. In this paper, we propose a methodology to detect harmful intra-procedural jump attacks at source code level and to automatically inject formally-proven countermeasures. The proposed software countermeasures defeat 100% of attacks that jump over at least two C source code statements or beyond. Experiments show that the resulting code is also hardened against unexpected function calls and jump attacks at assembly level

    Rapid Fault-Space Exploration by Evolutionary Pruning

    No full text
    corecore