90 research outputs found
The Onset of Anisotropic Transport of Two-Dimensional Electrons in High Landau Levels: An Isotropic-to-Nematic Liquid Crystal Phase Transition?
The recently discovered anisotropy of the longitudinal resistance of
two-dimensional electrons near half filling of high Landau levels is found to
persist to much higher temperatures T when a large in-plane magnetic field B||
is applied. Under these conditions we find that the longitudinal resistivity
scales quasi-linearly with B||/T. These observations support the notion that
the onset of anisotropy at B||=0 does not reflect the spontaneous development
of charge density modulations but may instead signal an isotropic-to-nematic
liquid crystal phase transition.Comment: 5 pages, 4 figure
An Investigation of Orientational Symmetry-Breaking Mechanisms in High Landau Levels
The principal axes of the recently discovered anisotropic phases of 2D
electron systems at high Landau level occupancy are consistently oriented
relative to the crystal axes of the host semiconductor. The nature of the
native rotational symmetry breaking field responsible for this preferential
orientation remains unknown. Here we report on experiments designed to
investigate the origin and magnitude of this symmetry breaking field. Our
results suggest that neither micron-scale surface roughness features nor the
precise symmetry of the quantum well potential confining the 2D system are
important factors. By combining tilted field transport measurements with
detailed self-consistent calculations we estimate that the native anisotropy
energy, whatever its origin, is typically ~ 1 mK per electron.Comment: Reference added, minor notational changes; final published versio
New collective states of 2D electrons in high Landau levels
A brief summary of the emerging evidence for a new class of collective states
of two-dimensional electrons in partially occupied excited Landau levels is
presented. Among the most dramatic phenomena described are the large
anisotropies of the resistivity observed at very low temperatures near
half-filling of the third and higher Landau levels and the non-linear character
of the re-entrant integer quantized Hall states in the flanks of the same
levels. The degree to which these findings support recent theoretical
predictions of charge density wave ground states is discussed and a preliminary
comparison to recent transport theories is made.Comment: To be published in Physica E, as part of the proceedings of the 11th
International Winterschool on New Developments in Solid State Physics held in
Mauterndorf, Austria, February, 2000. 25 pages and 9 figures in a single pdf
fil
Hartree-Fock Theory of Hole Stripe States
We report on Hartree-Fock theory results for stripe states of two-dimensional
hole systems in quantum wells grown on GaAs (311)A substrates. We find that the
stripe orientation energy has a rich dependence on hole density, and on
in-plane field magnitude and orientation. Unlike the electron case, the
orientation energy is non-zero for zero in-plane field, and the ground state
orientation can be either parallel or perpendicular to a finite in-plane field.
We predict an orientation reversal transition in in-plane fields applied along
the direction.Comment: 5 pages including 4 figure
New insulating phases of two-dimensional electrons in high Landau levels: observation of sharp thresholds to conduction
The intriguing re-entrant integer quantized Hall states recently discovered
in high Landau levels of high-mobility 2D electron systems are found to exhibit
extremely non-linear transport. At small currents these states reflect
insulating behavior of the electrons in the uppermost Landau level. At larger
currents, however, a discontinuous and hysteretic transition to a conducting
state is observed. These phenomena, found only in very narrow magnetic field
ranges, are suggestive of the depinning of a charge density wave state, but
other explanations can also be constructed.Comment: 5 pages, 5 figure
Anisotropic transport in unidirectional lateral superlattice around half-filling of the second Landau level
We have observed marked transport anisotropy in short period (a=92 nm)
unidirectional lateral superlattices around filling factors nu=5/2 and 7/2:
magnetoresistance shows a sharp peak for current along the modulation grating
while a dip appears for current across the grating. By altering the ratio a/l
(with l=sqrt{hbar/eB_perp} the magnetic length) via changing the electron
density n_e, it is shown that the nu=5/2 anisotropic features appear in the
range 6.6 alt a/l alt 7.2 varying their intensities, becoming most conspicuous
at a/l simeq 6.7. The peak/dip broadens with temperature roughly preserving its
height/depth up to 250 mK. Tilt experiments reveal that the structures are
slightly enhanced by an in-plane magnetic field B_| perpendicular to the
grating but are almost completely destroyed by B_| parallel to the grating. The
observations suggest the stabilization of a unidirectional charge-density-wave
or stripe phase by weak external periodic modulation at the second Landau
level.Comment: REVTeX, 5 pages, 3 figures, Some minor revisions, Added notes and
reference
Mean-field Phase Diagram of Two-Dimensional Electrons with Disorder in a Weak Magnetic Field
We study two-dimensional interacting electrons in a weak perpendicular
magnetic field with the filling factor and in the presence of a
quenched disorder. In the framework of the Hartree-Fock approximation, we
obtain the mean-field phase diagram for the partially filled highest Landau
level. We find that the CDW state can exist if the Landau level broadening
does not exceed the critical value .
Our analysis of weak crystallization corrections to the mean-field results
shows that these corrections are of the order of and
therefore can be neglected
Stripes in Quantum Hall Double Layer Systems
We present results of a study of double layer quantum Hall systems in which
each layer has a high-index Landau level that is half-filled. Hartree-Fock
calculations indicate that, above a critical layer separation, the system
becomes unstable to the formation of a unidirectional coherent charge density
wave (UCCDW), which is related to stripe states in single layer systems. The
UCCDW state supports a quantized Hall effect when there is tunneling between
layers, and is {\it always} stable against formation of an isotropic Wigner
crystal for Landau indices . The state does become unstable to the
formation of modulations within the stripes at large enough layer separation.
The UCCDW state supports low-energy modes associated with interlayer coherence.
The coherence allows the formation of charged soliton excitations, which become
gapless in the limit of vanishing tunneling. We argue that this may result in a
novel {\it ``critical Hall state''}, characterized by a power law in
tunneling experiments.Comment: 10 pages, 8 figures include
Coulomb drag as a signature of the paired quantum Hall state
Motivated by the recent Coulomb drag experiment of M. P. Lilly et. al, we
study the Coulomb drag in a two-layer system with Landau level filling factor
. We find that the drag conductivity in the incompressible paired
quantum Hall state at zero temperature can be finite. The drag conductivity is
also greatly enhanced above , at which the transition between the weakly
coupled compressible liquids and the paired quantum Hall liquid takes place. We
discuss the implications of our results for the recent experiment.Comment: 4 pages, 1 figure included, replaced by the published versio
Magnetoroton instabilities and static susceptibilities in higher Landau levels
We present analytical results concerning the magneto-roton instability in
higher Landau levels evaluated in the single mode approximation. The roton gap
appears at a finite wave vector, which is approximately independent of the LL
index n, in agreement with numerical calculations in the composite-fermion
picture. However, a large maximum in the static susceptibility indicates a
charge density modulation with wave vectors , as
expected from Hartree-Fock predictions. We thus obtain a unified description of
the leading charge instabilities in all LLs.Comment: 4 pages, 5 figure
- …
