350 research outputs found

    Dynamics of Inner Galactic Disks: The Striking Case of M100

    Full text link
    We investigate gas dynamics in the presence of a double inner Lindblad resonance within a barred disk galaxy. Using an example of a prominent spiral, M100, we reproduce the basic central morphology, including four dominant regions of star formation corresponding to the compression maxima in the gas. These active star forming sites delineate an inner boundary (so-called nuclear ring) of a rather broad oval detected in the near infrared. We find that inclusion of self-gravitational effects in the gas is necessary in order to understand its behavior in the vicinity of the resonances and its subsequent evolution. The self-gravity of the gas is also crucial to estimate the effect of a massive nuclear ring on periodic orbits in the stellar bar.Comment: 11 pages, postscript, compressed, uuencoded. Paper and 4 figures available at ftp://pa.uky.edu/shlosman/nobel or at http://www.pa.uky.edu/~shlosman/ . Invited talk at the Centennial Nobel Symposium on "Barred Galaxies and Circumnuclear Activity," A.Sandquist et al. (Eds.), Springer-Verlag, in pres

    On the nature of progress

    Get PDF
    15th International Conference, OPODIS 2011, Toulouse, France, December 13-16, 2011. ProceedingsWe identify a simple relationship that unifies seemingly unrelated progress conditions ranging from the deadlock-free and starvation-free properties common to lock-based systems, to non-blocking conditions such as obstruction-freedom, lock-freedom, and wait-freedom. Properties can be classified along two dimensions based on the demands they make on the operating system scheduler. A gap in the classification reveals a new non-blocking progress condition, weaker than obstruction-freedom, which we call clash-freedom. The classification provides an intuitively-appealing explanation why programmers continue to devise data structures that mix both blocking and non-blocking progress conditions. It also explains why the wait-free property is a natural basis for the consensus hierarchy: a theory of shared-memory computation requires an independent progress condition, not one that makes demands of the operating system scheduler

    The Bethe Ansatz for AdS5 x S5 Bound States

    Full text link
    We reformulate the nested coordinate Bethe ansatz in terms of coproducts of Yangian symmetry generators. This allows us to derive the nested Bethe equations for the bound state string S-matrices. We find that they coincide with the Bethe equations obtained from a fusion procedure. The bound state number dependence in the Bethe equations appears through the parameters x^{\pm} and the dressing phase only.Comment: typos correcte

    QCD properties of twist operators in the N=6 Chern-Simons theory

    Full text link
    We consider twist-1, 2 operators in planar N=6 superconformal Chern-Simons ABJM theory. We derive higher order anomalous dimensions from integrability and test various QCD-inspired predictions known to hold in N=4 SYM. In particular, we show that the asymptotic anomalous dimensions display intriguing remnants of Gribov-Lipatov reciprocity and Low-Burnett-Kroll logarithmic cancellations. Wrapping effects are also discussed and shown to be subleading at large spin.Comment: 22 pages, expanded reference

    The dynamics of quark-gluon plasma and AdS/CFT

    Full text link
    In these pedagogical lectures, we present the techniques of the AdS/CFT correspondence which can be applied to the study of real time dynamics of a strongly coupled plasma system. These methods are based on solving gravitational Einstein's equations on the string/gravity side of the AdS/CFT correspondence. We illustrate these techniques with applications to the boost-invariant expansion of a plasma system. We emphasize the common underlying AdS/CFT description both in the large proper time regime where hydrodynamic dynamics dominates, and in the small proper time regime where the dynamics is far from equilibrium. These AdS/CFT methods provide a fascinating arena interrelating General Relativity phenomenae with strongly coupled gauge theory physics.Comment: 35 pages, 3 figures. Lectures at the 5th Aegean summer school, `From gravity to thermal gauge theories: the AdS/CFT correspondence'. To appear in the proceedings in `Lecture Notes in Physics

    Shear Viscosity to Entropy Density Ratio in Six Derivative Gravity

    Full text link
    We calculate shear viscosity to entropy density ratio in presence of four derivative (with coefficient α\alpha') and six derivative (with coefficient α2\alpha'^2) terms in bulk action. In general, there can be three possible four derivative terms and ten possible six derivative terms in the Lagrangian. Among them two four derivative and eight six derivative terms are ambiguous, i.e., these terms can be removed from the action by suitable field redefinitions. Rest are unambiguous. According to the AdS/CFT correspondence all the unambiguous coefficients (coefficients of unambiguous terms) can be fixed in terms of field theory parameters. Therefore, any measurable quantities of boundary theory, for example shear viscosity to entropy density ratio, when calculated holographically can be expressed in terms of unambiguous coefficients in the bulk theory (or equivalently in terms of boundary parameters). We calculate η/s\eta/s for generic six derivative gravity and find that apparently it depends on few ambiguous coefficients at order α2\alpha'^2. We calculate six derivative corrections to central charges aa and cc and express η/s\eta/s in terms of these central charges and unambiguous coefficients in the bulk theory.Comment: 29 pages, no figure, V2, results and typos correcte

    Four loop reciprocity of twist two operators in N=4 SYM

    Get PDF
    The four loop universal anomalous dimension of twist-2 operators in N=4 SYM has been recently conjectured. In this paper, we prove that it obeys a generalized Gribov-Lipatov reciprocity, previously known to hold at the three loop level.Comment: 15 pages, v3: Appendix A.3 added, main body shortened, version accepted in JHE

    Dynamics of Phase Transitions by Hysteresis Methods I

    Full text link
    In studies of the QCD deconfining phase transition or crossover by means of heavy ion experiments, one ought to be concerned about non-equilibrium effects due to heating and cooling of the system. Motivated by this, we look at hysteresis methods to study the dynamics of phase transitions. Our systems are temperature driven through the phase transition using updating procedures in the Glauber universality class. Hysteresis calculations are presented for a number of observables, including the (internal) energy, properties of Fortuin-Kasteleyn clusters and structure functions. We test the methods for 2d Potts models, which provide a rich collection of phase transitions with a number of rigorously known properties. Comparing with equilibrium configurations we find a scenario where the dynamics of the transition leads to a spinodal decomposition which dominates the statistical properties of the configurations. One may expect an enhancement of low energy gluon production due to spinodal decomposition of the Polyakov loops, if such a scenario is realized by nature.Comment: 12 pages, revised after referee report, to appear in Phys. Rev.

    Single impurity operators at critical wrapping order in the beta-deformed N=4 SYM

    Full text link
    We study the spectrum of one single magnon in the superconformal beta-deformed N=4 SYM theory in the planar limit. We compute the anomalous dimensions of one-impurity operators O_{1,L}= tr(phi Z^{L-1}), including wrapping contributions at their critical order L.Comment: LaTeX, feynmf, Metapost, 20 pages, 11 figures, v2: results up to 11 loops completed, appendix on integral calculation extende
    corecore