111 research outputs found

    Biochemical diversity in the genus Coffea L. : chlorogenic acids, caffeine and mozambioside contents

    Get PDF
    L'étendue et la nature de la diversité biochimique de la cerise verte de café ont été établies grâce à un grand échantillonnage du genre #coffea,repreˊsenteˊpar9espeˋcesdelareˊgionGuineˊoCongolaise,9espeˋcesdelAfriquedelEst,et7espeˋcesdeMadagascar.LesanalysesHPLConteˊteˊutiliseˊespourdeˊterminerlateneurencafeˊine,enacidechlorogeˊniqueetenmozambioside.Lanalysedesdonneˊesdesprincipauxcomposeˊsmontrelexistencede2voiesmeˊtaboliques.Luneentraı^nelasyntheˋsedepetitesquantiteˊsdacidechlorogeˊnique(4,5, représenté par 9 espèces de la région Guinéo-Congolaise, 9 espèces de l'Afrique de l'Est, et 7 espèces de Madagascar. Les analyses HPLC ont été utilisées pour déterminer la teneur en caféine, en acide chlorogénique et en mozambioside. L'analyse des données des principaux composés montre l'existence de 2 voies métaboliques. L'une entraîne la synthèse de petites quantités d'acide chlorogénique (4,5 % dmb) et de caféine (>0,4 % dmb). Leur distribution dans le genre #coffea est étudiée en relation avec l'origine biogéographique des plants. (Résumé d'auteur

    An IL1RL1 genetic variant lowers soluble ST2 levels and the risk effects of APOE-ε4 in female patients with Alzheimer’s disease

    Get PDF
    Changes in the levels of circulating proteins are associated with Alzheimer’s disease (AD), whereas their pathogenic roles in AD are unclear. Here, we identified soluble ST2 (sST2), a decoy receptor of interleukin-33–ST2 signaling, as a new disease-causing factor in AD. Increased circulating sST2 level is associated with more severe pathological changes in female individuals with AD. Genome-wide association analysis and CRISPR–Cas9 genome editing identified rs1921622, a genetic variant in an enhancer element of IL1RL1, which downregulates gene and protein levels of sST2. Mendelian randomization analysis using genetic variants, including rs1921622, demonstrated that decreased sST2 levels lower AD risk and related endophenotypes in females carrying the Apolipoprotein E (APOE)-ε4 genotype; the association is stronger in Chinese than in European-descent populations. Human and mouse transcriptome and immunohistochemical studies showed that rs1921622/sST2 regulates amyloid-beta (Aβ) pathology through the modulation of microglial activation and Aβ clearance. These findings demonstrate how sST2 level is modulated by a genetic variation and plays a disease-causing role in females with AD

    Effect of priming interval on reactogenicity, peak immunological response, and waning after homologous and heterologous COVID-19 vaccine schedules: exploratory analyses of Com-COV, a randomised control trial

    Get PDF
    Background: Priming COVID-19 vaccine schedules have been deployed at variable intervals globally, which might influence immune persistence and the relative importance of third-dose booster programmes. Here, we report exploratory analyses from the Com-COV trial, assessing the effect of 4-week versus 12-week priming intervals on reactogenicity and the persistence of immune response up to 6 months after homologous and heterologous priming schedules using the vaccines BNT162b2 (tozinameran, Pfizer/BioNTech) and ChAdOx1 nCoV-19 (AstraZeneca). Methods: Com-COV was a participant-masked, randomised immunogenicity trial. For these exploratory analyses, we used the trial's general cohort, in which adults aged 50 years or older were randomly assigned to four homologous and four heterologous vaccine schedules using BNT162b2 and ChAdOx1 nCoV-19 with 4-week or 12-week priming intervals (eight groups in total). Immunogenicity analyses were done on the intention-to-treat (ITT) population, comprising participants with no evidence of SARS-CoV-2 infection at baseline or for the trial duration, to assess the effect of priming interval on humoral and cellular immune response 28 days and 6 months post-second dose, in addition to the effects on reactogenicity and safety. The Com-COV trial is registered with the ISRCTN registry, 69254139 (EudraCT 2020–005085–33). Findings: Between Feb 11 and 26, 2021, 730 participants were randomly assigned in the general cohort, with 77–89 per group in the ITT analysis. At 28 days and 6 months post-second dose, the geometric mean concentration of anti-SARS-CoV-2 spike IgG was significantly higher in the 12-week interval groups than in the 4-week groups for homologous schedules. In heterologous schedule groups, we observed a significant difference between intervals only for the BNT162b2–ChAdOx1 nCoV-19 group at 28 days. Pseudotyped virus neutralisation titres were significantly higher in all 12-week interval groups versus 4-week groups, 28 days post-second dose, with geometric mean ratios of 1·4 (95% CI 1·1–1·8) for homologous BNT162b2, 1·5 (1·2–1·9) for ChAdOx1 nCoV-19–BNT162b2, 1·6 (1·3–2·1) for BNT162b2–ChAdOx1 nCoV-19, and 2·4 (1·7–3·2) for homologous ChAdOx1 nCoV-19. At 6 months post-second dose, anti-spike IgG geometric mean concentrations fell to 0·17–0·24 of the 28-day post-second dose value across all eight study groups, with only homologous BNT162b2 showing a slightly slower decay for the 12-week versus 4-week interval in the adjusted analysis. The rank order of schedules by humoral response was unaffected by interval, with homologous BNT162b2 remaining the most immunogenic by antibody response. T-cell responses were reduced in all 12-week priming intervals compared with their 4-week counterparts. 12-week schedules for homologous BNT162b2 and ChAdOx1 nCoV-19–BNT162b2 were up to 80% less reactogenic than 4-week schedules. Interpretation: These data support flexibility in priming interval in all studied COVID-19 vaccine schedules. Longer priming intervals might result in lower reactogenicity in schedules with BNT162b2 as a second dose and higher humoral immunogenicity in homologous schedules, but overall lower T-cell responses across all schedules. Future vaccines using these novel platforms might benefit from schedules with long intervals. Funding: UK Vaccine Taskforce and National Institute for Health and Care Research

    Ferulic acid and derivatives: molecules with potential application in the pharmaceutical field

    Full text link
    corecore