9 research outputs found
Thermodynamics of Black Holes in Two (and Higher) Dimensions
A comprehensive treatment of black hole thermodynamics in two-dimensional
dilaton gravity is presented. We derive an improved action for these theories
and construct the Euclidean path integral. An essentially unique boundary
counterterm renders the improved action finite on-shell, and its variational
properties guarantee that the path integral has a well-defined semi-classical
limit. We give a detailed discussion of the canonical ensemble described by the
Euclidean partition function, and examine various issues related to stability.
Numerous examples are provided, including black hole backgrounds that appear in
two dimensional solutions of string theory. We show that the Exact String Black
Hole is one of the rare cases that admits a consistent thermodynamics without
the need for an external thermal reservoir. Our approach can also be applied to
certain higher-dimensional black holes, such as Schwarzschild-AdS,
Reissner-Nordstrom, and BTZ.Comment: 63 pages, 3 pdf figures, v2: added reference