8 research outputs found

    Effect of inlet valve timing and water blending on bioethanol HCCI combustion using forced induction and residual gas trapping

    Get PDF
    This is the post-print version of the final paper published in Fuel. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2007 Elsevier B.V.It has been shown previously that applying forced induction to homogeneous charge compression ignition (HCCI) combustion of bioethanol with residual gas trapping, results in a greatly extended engine load range compared to normal aspiration operation. However, at very high boost pressures, very high cylinder pressure rise rates develop. The approach documented here explores two ways that might have an effect on combustion in order to lower the maximum pressure rise rates and further improve the emissions of oxides of nitrogen (NOx); inlet valve timing and water blending. It was found that there is an optimal inlet valve timing. When the timing was significantly advanced or retarded away from the optimal, the combustion phasing could be retarded for a given lambda (excess air ratio). However, this would result in higher loads and lower lambdas for a given boost pressure, with possibly higher NOx emissions. Increasing the water content in ethanol gave similar results as the non-optimal inlet valve timing

    Characteristics of LPG-diesel dual fuelled engine operated with rapeseed methyl ester and gas-to-liquid diesel fuels

    Get PDF
    AbstractA Liquefied Petroleum Gas (LPG)-diesel dual fuelled combustion experimental study was carried out to understand the impact of the properties of the direct injection diesel fuels, such as rapeseed methyl ester (RME) and gas-to-liquid (GTL), on combustion characteristics, engine performance and emissions. The experimental results showed that up to 60% of liquid fuel replacement by LPG was reached while keeping engine combustion variability within the acceptable range and obtaining clear benefits in the soot-NOx trade-off. However, the amount of LPG was limited by adverse effects in engine thermal efficiency, HC and CO emissions. LPGā€“RME showed a good alternative to LPG-diesel dual fuelling, as better engine combustion variability, HC, CO and soot behaviour was obtained when compared to the other liquid fuels, mainly due to its fuel oxygen content. On the other hand, NOx emissions were the highest, but these can be balanced by the application of EGR. LPGā€“GTL dual fuelling resulted in the highest NOx emissionsĀ benefit over a wide range of engine operating conditions. The high cetane number and the absence of aromatic of GTL are the main parameters for the more favourable soot-NOx trade-off compared to LPGā€“ULSD (ultra low sulphur diesel) dual fuelling
    corecore