6 research outputs found

    Measurement of liver iron by magnetic resonance imaging in the UK Biobank population

    Get PDF
    The burden of liver disease continues to increase in the UK, with liver cirrhosis reported to be the third most common cause of premature death. Iron overload, a condition that impacts liver health, was traditionally associated with genetic disorders such as hereditary haemochromatosis, however, it is now increasingly associated with obesity, type-2 diabetes and non-alcoholic fatty liver disease. The aim of this study was to assess the prevalence of elevated levels of liver iron within the UK Biobank imaging study in a cohort of 9108 individuals. Magnetic resonance imaging (MRI) was undertaken at the UK Biobank imaging centre, acquiring a multi-echo spoiled gradient-echo single-breath-hold MRI sequence from the liver. All images were analysed for liver iron and fat (expressed as proton density fat fraction or PDFF) content using LiverMultiScan™. Liver iron was measured in 97.3% of the cohort. The mean liver iron content was 1.32 ± 0.32 mg/g while the median was 1.25 mg/g (min: 0.85 max: 6.44 mg/g). Overall 4.82% of the population were defined as having elevated liver iron, above commonly accepted 1.8 mg/g threshold based on biochemical iron measurements in liver specimens obtained by biopsy. Further analysis using univariate models showed elevated liver iron to be related to male sex (p5.6% PDFF) was associated with a slight increase in prevalence of elevated liver iron (4.4% vs 6.3%, p=0.0007). This study shows that population studies including measurement of liver iron concentration are feasible, which may in future be used to better inform patient stratification and treatment

    Repeatability and reproducibility of multiparametric magnetic resonance imaging of the liver

    Get PDF
    As the burden of liver disease reaches epidemic levels, there is a high unmet medical need to develop robust, accurate and reproducible non-invasive methods to quantify liver tissue characteristics for use in clinical development and ultimately in clinical practice. This prospective cross-sectional study systematically examines the repeatability and reproducibility of iron-corrected T1 (cT1), T2*, and hepatic proton density fat fraction (PDFF) quantification with multiparametric MRI across different field strengths, scanner manufacturers and models. 61 adult participants with mixed liver disease aetiology and those without any history of liver disease underwent multiparametric MRI on combinations of 5 scanner models from two manufacturers (Siemens and Philips) at different field strengths (1.5T and 3T). We report high repeatability and reproducibility across different field strengths, manufacturers, and scanner models in standardized cT1 (repeatability CoV: 1.7%, bias -7.5ms, 95% LoA of -53.6 ms to 38.5 ms; reproducibility CoV 3.3%, bias 6.5 ms, 95% LoA of -76.3 to 89.2 ms) and T2* (repeatability CoV: 5.5%, bias -0.18 ms, 95% LoA -5.41 to 5.05 ms; reproducibility CoV 6.6%, bias -1.7 ms, 95% LoA -6.61 to 3.15 ms) in human measurements. PDFF repeatability (0.8%) and reproducibility (0.75%) coefficients showed high precision of this metric. Similar precision was observed in phantom measurements. Inspection of the ICC model indicated that most of the variance in cT1 could be accounted for by study participants (ICC = 0.91), with minimal contribution from technical differences. We demonstrate that multiparametric MRI is a non-invasive, repeatable and reproducible method for quantifying liver tissue characteristics across manufacturers (Philips and Siemens) and field strengths (1.5T and 3T)

    The application of steady-state free precession (SSFP) in 2d-Ft NMR imaging

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:D74773/87 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Temporal and regional changes during focal ischemia in rat brain studied by proton spectroscopic imaging and quantitative diffusion NMR imaging

    No full text
    The early development of focal ischemia after permanent occlusion of the right middle cerebral artery (MCA) was studied in six rats using interleaved measurements by diffusion-weighted NMR imaging (DWI) of water and two variants of proton spectroscopic imaging (SI), multiecho SI (TE: 136, 272, 408 ms) and short TE SI (TE: 20 ms). Measurements on a 4.7-T NMR imaging system were performed between the control phase and approximately 6 h postocclusion. In the center of the ischemic lesion of all rats, the apparent diffusion coefficient (ADC) decreased rapidly to 84.4 +/- 4.2% (mean +/- SD) of the control values approximately 2 min postocclusion. Approximately 6 h postocclusion, the ADC was reduced to 67.1 +/- 5.9%. In contrast, large differences between the animals were observed for the temporal increase of lactate (Lac) in the ipsilateral hemisphere. The maximum Lac signal was reached in four rats after 0.5-1.5 h, and in two rats was not reached even after 6 h postocclusion. Six h postocclusion, SI spectra measured at a TE of 136 ms revealed a decrease in the CH3 signal of N-acetylaspartate (NAA) to 67 +/- 13% of the control values. Differences were observed between the spatial regions of decreased NAA and increased Lac. In the lesions, a T2 relaxation time of Lac of 292 +/- 40 ms, considering a J-coupling constant of 6.9 Hz, was measured. Furthermore, a prolongation of the T2 of the CH3 signal of creatine/phosphocreatine (Cr/PCr) was observed in the lesion, from 163 +/- 22 ms during control to 211 +/- 41 ms approximately 6 h postocclusion. The experiments proved that DWI and proton SI are valuable tools to provide complementary information on processes associated with brain infarcts

    Repeatability and reproducibility of multiparametric magnetic resonance imaging of the liver

    Get PDF
    <div><p>As the burden of liver disease reaches epidemic levels, there is a high unmet medical need to develop robust, accurate and reproducible non-invasive methods to quantify liver tissue characteristics for use in clinical development and ultimately in clinical practice. This prospective cross-sectional study systematically examines the repeatability and reproducibility of iron-corrected T1 (cT1), T2*, and hepatic proton density fat fraction (PDFF) quantification with multiparametric MRI across different field strengths, scanner manufacturers and models. 61 adult participants with mixed liver disease aetiology and those without any history of liver disease underwent multiparametric MRI on combinations of 5 scanner models from two manufacturers (Siemens and Philips) at different field strengths (1.5T and 3T). We report high repeatability and reproducibility across different field strengths, manufacturers, and scanner models in standardized cT1 (repeatability CoV: 1.7%, bias -7.5ms, 95% LoA of -53.6 ms to 38.5 ms; reproducibility CoV 3.3%, bias 6.5 ms, 95% LoA of -76.3 to 89.2 ms) and T2* (repeatability CoV: 5.5%, bias -0.18 ms, 95% LoA -5.41 to 5.05 ms; reproducibility CoV 6.6%, bias -1.7 ms, 95% LoA -6.61 to 3.15 ms) in human measurements. PDFF repeatability (0.8%) and reproducibility (0.75%) coefficients showed high precision of this metric. Similar precision was observed in phantom measurements. Inspection of the ICC model indicated that most of the variance in cT1 could be accounted for by study participants (ICC = 0.91), with minimal contribution from technical differences. We demonstrate that multiparametric MRI is a non-invasive, repeatable and reproducible method for quantifying liver tissue characteristics across manufacturers (Philips and Siemens) and field strengths (1.5T and 3T).</p></div
    corecore