1,435 research outputs found
Observation of Fermi-energy dependent unitary impurity resonances in a strong topological insulator Bi2Se3 with scanning tunneling spectroscopy
Scanning tunneling spectroscopic studies of Bi2Se3 epitaxial films on Si
(111) substrates reveal highly localized unitary impurity resonances associated
with non-magnetic quantum impurities. The strength of the resonances depends on
the energy difference between the Fermi level ({E_F}) and the Dirac point
({E_D}) and diverges as {E_F} approaches {E_D}. The Dirac-cone surface state of
the host recovers within ~ 2{\AA} spatial distance from impurities, suggesting
robust topological protection of the surface state of topological insulators
against high-density impurities that preserve time reversal symmetry.Comment: 6 pages, 6 figures. Accepted for fast-track publication in Solid
State Communications (2012
Isolation and partial characterization of infectious molecular clones of feline immunodeficiency virus obtained directly from bone marrow DNA of a naturally infected cat.
Replication-competent molecular clones of feline immunodeficiency virus (FIV) were isolated directly from the DNA of bone marrow cells of a naturally FIV-infected cat. After transfection in a feline kidney cell line (CrFK) and subsequent cocultivation with peripheral blood mononuclear cells (PBMC), the viral progeny of the clones was infectious for PBMC but not for CrFK cells. PBMC infected with these clones showed syncytium formation, a decrease in cell viability, and gradual loss of CD4+ cells. The restriction maps of these clones differed from those obtained for previously described molecular clones of FIV derived from cats in the United States. The predicted amino acid sequence similarity of the envelope genes of the two clones was 99.3%, whereas the similarities of the sequences of the clones to those of two molecular clones from the United States, Petaluma and PPR, were 86 and 88%, respectively. Most of the differences between the amino acid sequences of the two clones and those of the clones from the United States were found in five different hypervariable (HV) regions, HV-1 through HV-5. The viral progeny of one of these clones was inoculated into two specific-pathogen-free cats. The animals seroconverted, and the virus could be reisolated from their PBMC
Quantum Mirrors and Crossing Symmetry as Heart of Ghost Imaging
In this paper it is proved that the key to understanding the ghost imaging
mystery are the crossing symmetric photon reactions in the nonlinear media.
Hence, the laws of the plane quantum mirror (QM) and that of spherical quantum
mirror, observed in the ghost imaging experiments, are obtained as natural
consequences of the energy-momentum conservation laws. So, it is shown that the
ghost imaging laws depend only on the energy-momentum conservation and not on
the photons entanglement. The extension of these results to the ghost imaging
with other kind of light is discussed. Some fundamental experiments for a
decisive tests of the [SPDC-DFG]-quantum mirror are suggested.Comment: 11 pages, 9 figure
Observation of Two New N* Peaks in J/psi -> and Decays
The system in decays of is limited to be
isospin 1/2 by isospin conservation. This provides a big advantage in studying
compared with and experiments which mix
isospin 1/2 and 3/2 for the system. Using 58 million decays
collected with the Beijing Electron Positron Collider, more than 100 thousand
events are obtained. Besides two well known
peaks at 1500 MeV and 1670 MeV, there are two new, clear peaks in
the invariant mass spectrum around 1360 MeV and 2030 MeV. They are the
first direct observation of the peak and a long-sought "missing"
peak above 2 GeV in the invariant mass spectrum. A simple
Breit-Wigner fit gives the mass and width for the peak as MeV and MeV, and for the new peak above 2 GeV
as MeV and MeV, respectively
Numerical simulations of a non-commutative theory: the scalar model on the fuzzy sphere
We address a detailed non-perturbative numerical study of the scalar theory
on the fuzzy sphere. We use a novel algorithm which strongly reduces the
correlation problems in the matrix update process, and allows the investigation
of different regimes of the model in a precise and reliable way. We study the
modes associated to different momenta and the role they play in the ``striped
phase'', pointing out a consistent interpretation which is corroborated by our
data, and which sheds further light on the results obtained in some previous
works. Next, we test a quantitative, non-trivial theoretical prediction for
this model, which has been formulated in the literature: The existence of an
eigenvalue sector characterised by a precise probability density, and the
emergence of the phase transition associated with the opening of a gap around
the origin in the eigenvalue distribution. The theoretical predictions are
confirmed by our numerical results. Finally, we propose a possible method to
detect numerically the non-commutative anomaly predicted in a one-loop
perturbative analysis of the model, which is expected to induce a distortion of
the dispersion relation on the fuzzy sphere.Comment: 1+36 pages, 18 figures; v2: 1+55 pages, 38 figures: added the study
of the eigenvalue distribution, added figures, tables and references, typos
corrected; v3: 1+20 pages, 10 eps figures, new results, plots and references
added, technical details about the tests at small matrix size skipped,
version published in JHE
Special symplectic Lie groups and hypersymplectic Lie groups
A special symplectic Lie group is a triple such that
is a finite-dimensional real Lie group and is a left invariant
symplectic form on which is parallel with respect to a left invariant
affine structure . In this paper starting from a special symplectic Lie
group we show how to ``deform" the standard Lie group structure on the
(co)tangent bundle through the left invariant affine structure such
that the resulting Lie group admits families of left invariant hypersymplectic
structures and thus becomes a hypersymplectic Lie group. We consider the affine
cotangent extension problem and then introduce notions of post-affine structure
and post-left-symmetric algebra which is the underlying algebraic structure of
a special symplectic Lie algebra. Furthermore, we give a kind of double
extensions of special symplectic Lie groups in terms of post-left-symmetric
algebras.Comment: 32 page
The pole in
Using a sample of 58 million events recorded in the BESII detector,
the decay is studied. There are conspicuous
and signals. At low mass, a large
broad peak due to the is observed, and its pole position is determined
to be - MeV from the mean of six analyses.
The errors are dominated by the systematic errors.Comment: 15 pages, 6 figures, submitted to PL
Measurements of the observed cross sections for exclusive light hadron production in e^+e^- annihilation at \sqrt{s}= 3.773 and 3.650 GeV
By analyzing the data sets of 17.3 pb taken at GeV
and 6.5 pb taken at GeV with the BESII detector at the
BEPC collider, we have measured the observed cross sections for 12 exclusive
light hadron final states produced in annihilation at the two energy
points. We have also set the upper limits on the observed cross sections and
the branching fractions for decay to these final states at 90%
C.L.Comment: 8 pages, 5 figur
Measurements of Cabibbo Suppressed Hadronic Decay Fractions of Charmed D0 and D+ Mesons
Using data collected with the BESII detector at storage ring
Beijing Electron Positron Collider, the measurements of relative branching
fractions for seven Cabibbo suppressed hadronic weak decays ,
, and , , and are presented.Comment: 11 pages, 5 figure
- …
