46 research outputs found

    4 Ds in health research - working together toward rapid precision medicine

    No full text
    Patient therapy is based mainly on a combination of diagnosis, suitable monitoring or support devices and drug treatment and is usually employed for a pre‐existing disease condition. Therapy remains predominantly symptom‐based, although it is increasingly clear that individual treatment is possible and beneficial. However, reasonable precision medicine can only be realized with the coordinated use of diagnostics, devices and drugs in combination with extensive databases (4Ds), an approach that has not yet found sufficient implementation. The practical combination of 4Ds in health care is progressing, but several obstacles still hamper their extended use in precision medicine

    Ceramides as Novel Disease Biomarkers: Review

    No full text
    Ceramides are sphingolipids and integral components of the eukaryotic cell membrane. Apart from providing structural integrity, ceramides have also been shown to act as second messengers in cell signaling processes. In recent publications, ceramide modulation has been reported in pathological conditions such as cancer, diabetes, Alzheimer's disease (AD), coronary artery disease (CAD), multiple sclerosis (MS), as well as depression. Ceramides or ceramide panel combinations have been proposed as specific disease biomarkers that could be detected in diseased tissue, synovial fluid, cerebrospinal fluid (CSF), and blood. This article reviews ceramide modulation in a selection of different diseases and the potential use of ceramides as biomarkers in diagnostics, determination of disease stage and personalized medicine

    Nrf2, the master regulator of anti-oxidative responses

    No full text
    Tight regulation of inflammation is very important to guarantee a balanced immune response without developing chronic inflammation. One of the major mediators of the resolution of inflammation is the transcription factor: the nuclear factor erythroid 2-like 2 (Nrf2). Stabilized following oxidative stress, Nrf2 induces the expression of antioxidants as well as cytoprotective genes, which provoke an anti-inflammatory expression profile, and is crucial for the initiation of healing. In view of this fundamental modulatory role, it is clear that both hyper- or hypoactivation of Nrf2 contribute to the onset of chronic diseases. Understanding the tight regulation of Nrf2 expression/activation and its interaction with signaling pathways, known to affect inflammatory processes, will facilitate development of therapeutic approaches to prevent Nrf2 dysregulation and ameliorate chronic inflammatory diseases. We discuss in this review the principle mechanisms of Nrf2 regulation with a focus on inflammation and autophagy, extending the role of dysregulated Nrf2 to chronic diseases and tumor development

    Azithromycin: Mechanisms of action and their relevance for clinical applications

    No full text
    Azithromycin is a macrolide antibiotic which inhibits bacterial protein synthesis, quorum-sensing and reduces the formation of biofilm. Accumulating effectively in cells, particularly phagocytes, it is delivered in high concentrations to sites of infection, as reflected in rapid plasma clearance and extensive tissue distribution. Azithromycin is indicated for respiratory, urogenital, dermal and other bacterial infections, and exerts immunomodulatory effects in chronic inflammatory disorders, including diffuse panbronchiolitis, post-transplant bronchiolitis and rosacea. Modulation of host responses facilitates its long-term therapeutic benefit in cystic fibrosis, non-cystic fibrosis bronchiectasis, exacerbations of chronic obstructive pulmonary disease (COPD) and non-eosinophilic asthma. Initial, stimulatory effects of azithromycin on immune and epithelial cells, involving interactions with phospholipids and Erk1/2, are followed by later modulation of transcription factors AP-1, NFκB, inflammatory cytokine and mucin release. Delayed inhibitory effects on cell function and high lysosomal accumulation accompany disruption of protein and intracellular lipid transport, regulation of surface receptor expression, of macrophage phenotype and autophagy. These later changes underlie many immunomodulatory effects of azithromycin, contributing to resolution of acute infections and reduction of exacerbations in chronic airway diseases. A sub-group of post-transplant bronchiolitis patients appears to be sensitive to azithromycin, as may be patients with severe sepsis. Other promising indications include chronic prostatitis and periodontitis, but weak activity in malaria is unlikely to prove crucial. Long-term administration of azithromycin must be balanced against the potential for increased bacterial resistance. Azithromycin has a very good record of safety, but recent reports indicate rare cases of cardiac torsades des pointes in patients at risk. © 2014 Elsevier Inc
    corecore