2,144 research outputs found
Deformations of coisotropic submanifolds for fibrewise entire Poisson structures
We show that deformations of a coisotropic submanifold inside a fibrewise
entire Poisson manifold are controlled by the -algebra introduced by
Oh-Park (for symplectic manifolds) and Cattaneo-Felder. In the symplectic case,
we recover results previously obtained by Oh-Park. Moreover we consider the
extended deformation problem and prove its obstructedness
Early reionization by miniquasars
Motivated by the recent detection by the Wilkinson Microwave Anisotropy Probe of a large optical depth to Thomson scattering, implying a very early reionization epoch, we assess a scenario where the universe was reionized by "miniquasars" powered by intermediate-mass black holes (IMBHs), the remnants of the first generation of massive stars. Pregalactic IMBHs form within minihalos above the cosmological Jeans mass collapsing at z > 20, get incorporated through mergers into larger and larger systems, sink to the center as a result of dynamical friction, and accrete cold material. The merger history of dark halos and associated IMBHs is followed by Monte Carlo realizations of the merger hierarchy in a CDM cosmology. Our model is based on the assumptions that quasar activity is driven by major mergers and nuclear IMBHs accrete at the Eddington rate a fraction of the gas in the merger remnant. The long dynamical frictional timescales leave many IMBHs "wandering" in galaxy halos after a minor merger. While seed IMBHs that are as rare as the 3.5 peaks of the primordial density field evolve largely in isolation, a significant number of BH binary systems will form if IMBHs populate the more numerous 3 peaks instead. In the case of rapid binary coalescence a fraction of IMBHs will be displaced from galaxy centers and ejected into the intergalactic medium (IGM) by the "gravitational rocket" effect, rather than accrete and shine as miniquasars. We show that, under a number of plausible assumptions for the amount of gas accreted onto IMBHs and their emission spectrum, miniquasars powered by IMBHs, and not their stellar progenitors, may be responsible for cosmological reionization at z 15. Reionization by miniquasars with a hard spectrum may be more "economical" than stellar reionization, as soft X-rays escape more easily from the dense sites of star formation and travel farther than EUV radiation. Energetic photons will permeate the universe more uniformly, make the low-density diffuse IGM warm and weakly ionized prior to the epoch of reionization breakthrough, set an entropy floor, and reduce gas clumping. Future 21 cm observations may detect a preheated, weakly ionized IGM in emission against the cosmic microwave background
Duality cascades and duality walls
We recast the phenomenon of duality cascades in terms of the Cartan matrix
associated to the quiver gauge theories appearing in the cascade. In this
language, Seiberg dualities for the different gauge factors correspond to Weyl
reflections. We argue that the UV behavior of different duality cascades
depends markedly on whether the Cartan matrix is affine ADE or not. In
particular, we find examples of duality cascades that can't be continued after
a finite energy scale, reaching a "duality wall", in terminology due to M.
Strassler. For these duality cascades, we suggest the existence of a UV
completion in terms of a little string theory.Comment: harvmac, 24 pages, 4 figures. v2: references added. v3: reference
adde
Path integral formulation of Hodge duality on the brane
In the warped compactification with a single Randall-Sundrum brane, a
puzzling claim has been made that scalar fields can be bound to the brane but
their Hodge dual higher-rank anti-symmetric tensors cannot. By explicitly
requiring the Hodge duality, a prescription to resolve this puzzle was recently
proposed by Duff and Liu. In this note, we implement the Hodge duality via path
integral formulation in the presence of the background gravity fields of warped
compactifications. It is shown that the prescription of Duff and Liu can be
naturally understood within this framework.Comment: 7 pages, LaTe
K* nucleon hyperon form factors and nucleon strangeness
A crucial input for recent meson hyperon cloud model estimates of the nucleon
matrix element of the strangeness current are the nucleon-hyperon-K* (NYK*)
form factors which regularize some of the arising loops. Prompted by new and
forthcoming information on these form factors from hyperon-nucleon potential
models, we analyze the dependence of the loop model results for the
strange-quark observables on the NYK* form factors and couplings. We find, in
particular, that the now generally favored soft N-Lambda-K* form factors can
reduce the magnitude of the K* contributions in such models by more than an
order of magnitude, compared to previous results with hard form factors. We
also discuss some general implications of our results for hadronic loop models.Comment: 9 pages, 8 figures, new co-author, discussion extended to the
momentum dependence of the strange vector form factor
SU(3) Predictions for Weak Decays of Doubly Heavy Baryons -- including SU(3) breaking terms
We find expressions for the weak decay amplitudes of baryons containing two b
quarks (or one b and one c quark -- many relationship are the same) in terms of
unknown reduced matrix elements. This project was originally motivated by the
request of the FNAL Run II b Physics Workshop organizers for a guide to
experimentalists in their search for as yet unobserved hadrons. We include an
analysis of linear SU(3) breaking terms in addition to relationships generated
by unbroken SU(3) symmetry, and relate these to expressions in terms of the
complete set of possible reduced matrix elements.Comment: 49 page
Higher meson resonances in and
The role of higher meson resonances with spin 1 and 2 is investigated
quantitatively in the decay processes of and
. Among the higher resonances, we find that the
tensor meson can give a nontrivial contribution especially to the
decay process. When the contribution is
combined with the processes involving the vector and scalar meson intermediate
states, a good agreement with the recent measurements is achieved for both
decays. The effect of the is found to be sizable at the
intermediate photon energies and may be verified by precise measurements of the
recoil photon spectrum of the decay. The
dependence of the decay widths on various models for the - mixing
in the literature is also investigated.Comment: 16 pages, REVTeX, 6 figures, revised version, to appear in Phys. Rev.
From Tetraquark to Hexaquark: A Systematic Study of Heavy Exotics in the Large Limit
A systematic study of multiquark exotics with one or heavy quarks in
the large limit is presented. By binding a chiral soliton to a heavy
meson, either a normal -quark baryon or an exotic -quark baryon
is obtained. By replacing the heavy quark with heavy antiquarks, exotic
-quark and -quark mesons are obtained. When , they are
just the normal triquark baryon , the exotic pentaquark baryon , tetraquark di-meson and the hexaquark
di-baryon respectively. Their
stabilities and decays are also discussed. In particular, it is shown that the
``heavy to heavy'' semileptonic decays are described by the Isgur--Wise form
factors of the normal baryons.Comment: 14 pages in REVTeX, no Figure
Time and Amplitude of Afterpulse Measured with a Large Size Photomultiplier Tube
We have studied the afterpulse of a hemispherical photomultiplier tube for an
upcoming reactor neutrino experiment. The timing, the amplitude, and the rate
of the afterpulse for a 10 inch photomultiplier tube were measured with a 400
MHz FADC up to 16 \ms time window after the initial signal generated by an LED
light pulse. The time and amplitude correlation of the afterpulse shows several
distinctive groups. We describe the dependencies of the afterpulse on the
applied high voltage and the amplitude of the main light pulse. The present
data could shed light upon the general mechanism of the afterpulse.Comment: 11 figure
Inhomogeneous magnetism induced in a superconductor at superconductor-ferromagnet interface
We study a magnetic proximity effect at superconductor (S) - ferromagnet (F)
interface. It is shown that due to an exchange of electrons between the F and S
metals ferromagnetic correlations extend into the superconductor, being
dependent on interface parameters. We show that ferromagnetic exchange field
pair breaking effect leads to a formation of subgap bands in the S layer local
density of states, that accommodate only one spin-polarized quasiparticles.
Equilibrium magnetization leakage into the S layer as function of SF interface
quality and a value of ferromagnetic interaction have also been calculated. We
show that a damped-oscillatory behavior versus distance from SF interface is a
distinguished feature of the exchange-induced magnetization of the S layer.Comment: 10 pages, 7 Postscript figure
- âŠ