21 research outputs found

    Dynamics of Nitric Oxide and Nitrous Oxide Emission during Nitrogen Conversion Processes

    No full text
    Nitric oxide (NO) and nitrous oxide (N2O) emissions can be a serious threat to the environment. Rising levels of N2O in the atmosphere contribute to global warming and destruction of the ozone layer. This thesis describes an investigation on the emission of NO and N2O during nitrogen conversion processes. Emissions were measured at wastewater treatment plants and at lab-scale reactors to investigate the underlying mechanisms. Metabolic and kinetic models were used to identify pathways leading to emissions.BiotechnologyApplied Science

    Particle related fractionation and characterisation of municipal wastewater

    No full text
    Several studies show that a more detailed characterisation of the particulate matter in municipal wastewater gives a better understanding and prediction of removal efficiencies of physical-chemical treatment techniques and the application of optimal chemical dosages. Such a characterisation should include the distribution of contaminants over various particle sizes. This article describes a method and results of experimental and full-scale investigations, conducted to determine how contaminants in wastewater are distributed over different particle sizes. For this purpose, particle size fractionations of wastewater influents originating from more than thirteen WWTP were carried out. One of these fractionations (WWTP Venray) is shown and interpreted in this article. First, the wastewaters were fractionated into 5 to 6 particle fractions (45, 5.0, 1.0/1.2, 0.45 and 0.1 m) after which the fractions were analyzed for various water quality parameters like organic components, nutrients, salts, solids and turbidity. Based on the results the effects of removal of the different size fractions on design of the biological treatment and energy balance of a wastewater treatment plant can be assessed. The method also indicates whether a certain wastewater is efficiently treatable with physical-chemical pre-treatment methods. It is concluded wastewater fractionation on particle size is very useful, but that wastewater characteristics and particle size distributions should not be generalised, but have to be interpreted as indications for a certain average wastewater composition. To give more insight into the distribution of contaminants over particle size and the particle removal potential, a specific wastewater fractionation has to be carried out per WWT

    Particle related fractionation and characterisation of municipal wastewater

    No full text
    Several studies show that a more detailed characterisation of the particulate matter in municipal wastewater gives a better understanding and prediction of removal efficiencies of physical-chemical treatment techniques and the application of optimal chemical dosages. Such a characterisation should include the distribution of contaminants over various particle sizes. This article describes a method and results of experimental and full-scale investigations, conducted to determine how contaminants in wastewater are distributed over different particle sizes. For this purpose, particle size fractionations of wastewater influents originating from more than thirteen WWTP were carried out. One of these fractionations (WWTP Venray) is shown and interpreted in this article. First, the wastewaters were fractionated into 5 to 6 particle fractions (45, 5.0, 1.0/1.2, 0.45 and 0.1 m) after which the fractions were analyzed for various water quality parameters like organic components, nutrients, salts, solids and turbidity. Based on the results the effects of removal of the different size fractions on design of the biological treatment and energy balance of a wastewater treatment plant can be assessed. The method also indicates whether a certain wastewater is efficiently treatable with physical-chemical pre-treatment methods. It is concluded wastewater fractionation on particle size is very useful, but that wastewater characteristics and particle size distributions should not be generalised, but have to be interpreted as indications for a certain average wastewater composition. To give more insight into the distribution of contaminants over particle size and the particle removal potential, a specific wastewater fractionation has to be carried out per WWT

    Nitrous oxide emission during wastewater treatment

    No full text
    Contains fulltext : 75429.pdf (publisher's version ) (Closed access)11 p

    Effect of dynamic process conditions on nitrogen oxides emission from a nitrifying culture

    No full text
    Item does not contain fulltext7 p

    Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment

    No full text
    Contains fulltext : 72216.pdf (publisher's version ) (Closed access)15 p

    Analysis of ammonia-oxidizing bacteria dominating in lab-scale bioreactors with high ammonium bicarbonate loading

    No full text
    The ammonia-oxidizing bacterial community (AOB) was investigated in two types of laboratory-scale bioreactors performing partial oxidation of ammonia to nitrite or nitrate at high (80 mM) to extremely high (428 mM) concentrations of ammonium bicarbonate. At all conditions, the dominant AOB was affiliated to the Nitrosomonas europaea lineage as was determined by fluorescence in situ hybridization and polymerase chain reaction in combination with denaturing gradient gel electrophoresis. Molecular analysis of the mixed populations, based on the 16S rRNA and cbbL genes, demonstrated the presence of two different phylotypes of Nitrosomonas, while microbiological analysis produced a single phylotype, represented by three different morphotypes. One of the most striking features of the AOB populations encountered in the bioreactors was the domination of highly aggregated obligate microaerophilic Nitrosomonas, with unusual cellular and colony morphology, commonly observed in nitrifying bioreactors but rarely investigated by cultural methods. The latter is probably not an adaptation to stressful conditions created by high ammonia or nitrite concentrations, but oxygen seems to be a stressful factor in these bioreactors
    corecore