7 research outputs found
Sensitivity of the ISO 6579:2002/Amd 1:2007 standard method for detection of Salmonella spp. on mesenteric lymph nodes from slaughter pigs
The ISO 6579:2002/Amd 1:2007 (ISO) standard has been the bacteriological standard method used in the European Union for the detection of Salmonella spp. in pig mesenteric lymph nodes (MLN), but there are no published estimates of the diagnostic sensitivity (Se) of the method in this matrix. Here, the Se of the ISO (SeISO) was estimated on 675 samples selected from two populations with different Salmonella prevalences (14 farms with a =20% prevalence and 13 farms with a <20% prevalence) and through the use of latent-class models in concert with Bayesian inference, assuming 100% ISO specificity, and an invA-based PCR as the second diagnostic method. The SeISO was estimated to be close to 87%, while the sensitivity of the PCR reached up to 83.6% and its specificity was 97.4%. Interestingly, the bacteriological reanalysis of 33 potential false-negative (PCR-positive) samples allowed isolation of 19 (57.5%) new Salmonella strains, improving the overall diagnostic accuracy of the bacteriology. Considering the usual limitations of bacteriology regarding Se, these results support the adequacy of the ISO for the detection of Salmonella spp. from MLN and also that of the PCR-based method as an alternative or complementary (screening) test for the diagnosis of pig salmonellosis, particularly considering the cost and time benefits of the molecular procedure
Relationship between azithromycin susceptibility and administration efficacy for nontypeable Haemophilus influenzae respiratory infection
Nontypeable Haemophilus influenzae (NTHI) is an opportunistic pathogen that is an important cause of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). COPD is an inflammatory disease of the airways, and exacerbations are acute inflammatory events superimposed on this background of chronic inflammation. Azithromycin (AZM) is a macrolide antibiotic with antibacterial and anti-inflammatory properties and a clinically proven potential for AECOPD prevention and management. Relationships between AZM efficacy and resistance by NTHI and between bactericidal and immunomodulatory effects on NTHI respiratory infection have not been addressed. In this study, we employed two pathogenic NTHI strains with different AZM sus- ceptibilities (NTHI 375 [AZM susceptible] and NTHI 353 [AZM resistant]) to evaluate the prophylactic and therapeutic effects of AZM on the NTHI-host interplay. At the cellular level, AZM was bactericidal toward intracellular NTHI inside alveolar and bronchial epithelia and alveolar macrophages, and it enhanced NTHI phagocytosis by the latter cell type. These effects correlated with the strain MIC of AZM and the antibiotic dose. Additionally, the effect of AZM on NTHI infection was assessed in a mouse model of pulmonary infection. AZM showed both preventive and therapeutic efficacies by lowering NTHI 375 bacterial counts in lungs and bronchoalveolar lavage fluid (BALF) and by reducing histopathological inflammatory lesions in the upper and lower airways of mice. Conversely, AZM did not reduce bacterial loads in animals infected with NTHI 353, in which case a milder anti- inflammatory effect was also observed. Together, the results of this work link the bactericidal and anti-inflammatory effects of AZM and frame the efficacy of this antibiotic against NTHI respiratory infection
Protection from Staphylococcus aureus mastitis associated with poly-N-acetyl β-1,6 glucosamine specific antibody production using biofilm-embedded bacteria
Staphylococcus aureus vaccines based on bacterins surrounded by slime, surface polysaccharides coupled to protein carriers and polysaccharides embedded in liposomes administered together with non-biofilm bacterins confer protection against mastitis. However, it remains unknown whether protective antibodies are directed to slime-associated known exopolysaccharides and could be produced in the absence of bacterin immunizations. Here, a sheep mastitis vaccination study was carried out using bacterins, crude bacterial extracts or a purified exopolysaccharide from biofilm bacteria delivered in different vehicles. This polysaccharide reacted specifically with antibodies to poly-N-acetyl-β-1,6-glucosamine (PNAG) and not with antibodies to other capsular antigens or bacterial components. Following intra-mammary challenge with biofilm-producing bacteria, antibody production against the polysaccharide, milk bacterial counts and mastitis lesions were determined. Bacterins from strong biofilm-producing bacteria triggered the highest production of antibodies to PNAG and conferred the highest protection against infection and mastitis, compared with weak biofilm-producing bacteria and non-cellular inocula. Thus, bacterins from strong biofilm bacteria, rather than purified polysaccharide, are proposed as a cost-efficient vaccination against S. aureus ruminant mastitis
In vitro assay for the anti-brucella activity of medicinal plants against tetracycline-resistant Brucella melitensis *
Brucellosis, a zoonosis caused by four species of brucella, has a high morbidity. Brucella melitensis is the main causative agent of brucellosis in both human and small ruminants. As an alternative to conventional antibiotics, medicinal plants are valuable resources for new agents against antibiotic-resistant strains. The aim of this study was to investigate the usage of native plants for brucellosis treatment. For this purpose, the anti-brucella activities of ethanolic and methanolic extracts of Salvia sclarea, Oliveria decumbens, Ferulago angulata, Vitex pseudo-negundo, Teucrium polium, Plantago ovata, Cordia myxa, and Crocus sativus were assessed. The activity against a resistant Br. melitensis strain was determined by disc diffusion method at various concentrations from 50–400 mg/ml. Antibiotic discs were also used as a control. Among the evaluated herbs, six plant (Salvia sclarea, Oliveria decumbens, Ferulago angulata, Vitex pseudo-negundo, Teucrium polium, and Crocus sativus) showed anti-brucella activity. Oliveria decumbens was chosen as the most effective plant for further studies. A tested isolate exhibited resistance to tetracycline, nafcillin, oxacillin, methicillin, and colistin. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values for Oliveria decumbens against resistant Br. melitensis were the same (5 mg/ml), and for gentamicin they were both 2 mg/ml. Time-kill kinetics for a methanolic extract of Oliveria decumbens was 7 h whereas for an ethanolic extract it was 28 h. Also, Oliveria decumbens extracts showed a synergistic effect in combination with doxycycline and tetracycline. In general, the similar values of MIC and MBC for Oliveria decumbens suggest that these extracts could act as bactericidal agents against Br. melitensis. In addition to Oliveria decumbens, Crocus sativus and Salvia sclarea also had good anti-brucella activity and these should be considered for further study