61 research outputs found

    Endogenous production of IL-1B by breast cancer cells drives metastasis and colonisation of the bone microenvironment

    Get PDF
    Background: Breast cancer bone metastases are incurable highlighting the need for new therapeutic targets. After colonizing bone, breast cancer cells remain dormant, until signals from the microenvironment stimulate outgrowth into overt metastases. Here we show that endogenous production of IL-1B by tumor cells drives metastasis and growth in bone. Methods: Tumor/stromal IL-B and IL-1R1 expression was assessed in patient samples and effects of the IL-1R antagonist, Anakinra or the IL-1B antibody Canakinumab on tumor growth and spontaneous metastasis were measured in a humanized mouse model of breast cancer bone metastasis. Effects of tumor cell-derived IL-1B on bone colonisation and parameters associated with metastasis were measured in MDA-MB-231, MCF7 and T47D cells transfected with IL-1B/control. Results: In tissue samples from >1300 patients with stage II/III breast cancer, IL-1B in tumor cells correlated with relapse in bone (hazard ratio 1.85; 95% CI 1.05-3.26; P=0.02) and other sites (hazard ratio 2.09; 95% CI 1.26-3.48; P=0.0016). In a humanized model of spontaneous breast cancer metastasis to bone, Anakinra or Canakinumab reduced metastasis and reduced the number of tumor cells shed into the circulation. Production of IL-1B by tumor cells promoted EMT (altered E-Cadherin, N-Cadherin and G-Catenin), invasion, migration and bone colonisation. Contact between tumor and osteoblasts or bone marrow cells increased IL-1B secretion from all three cell types. IL-1B alone did not stimulate tumor cell proliferation. Instead, IL-1B caused expansion of the bone metastatic niche leading to tumor proliferation. Conclusion: Pharmacological inhibition of IL-1B has potential as a novel treatment for breast cancer metastasis

    Variation in tau isoform expression in different brain regions and disease states

    No full text
    Progressive supranuclear palsy (PSP) is the most common atypical parkinsonian disorder. Abnormal tau inclusions, in selected regions of the brain, are a hallmark of the disease and the H1 haplotype of MAPT, the gene encoding tau, is the major risk factor in PSP. A 3-repeat and 4-repeat (4R) tau isoform ratio imbalance has been strongly implicated as a cause of disease. Thus, understanding tau isoform regional expression in disease and pathology-free states is crucial to elucidating the mechanisms involved in PSP and other tauopathies. We used a tau isoform-specific fluorescent assay to investigate relative 4R-tau expression in 6 different brain regions in PSP cases and healthy control samples. We identified a marked difference in 4R-tau relative expression, across brain regions and between MAPT haplotypes. Highest 4R-tau expression levels were identified in the globus pallidus compared with pons, cerebellum, and frontal cortex. 4R-tau expression levels were related to the MAPT H1 and H1c haplotypes. Similar regional variation was seen in PSP case and in control samples
    • …
    corecore