21 research outputs found

    Evidence for Cooperativity between the Four Binding Sites of Dimeric ArsD, an As (III)-responsive Transcriptional Regulator

    Get PDF
    ArsD is a trans-acting repressor of the arsRDABC operon that confers resistance to arsenicals and antimonials in Escherichia coli. It possesses two-pairs of vicinal cysteine residues, Cys12-Cys13 and Cys112-Cys113, that potentially form separate binding sites for the metalloids that trigger dissociation of ArsD from the operon. However, as a homodimer it has four vicinal cysteine pairs. Titration of the steady-state fluorescence of ArsD with metalloids revealed positive cooperativity, with a Hill coefficient of 2, between these sites. Disruption of the Cys112-Cys113 site by mutagenesis of arsD, but not the Cys12-Cys13 site, largely abolished this cooperativity, indicative of interactions between adjacent Cys112-Cys113 sites within the dimer. The kinetics of metalloid binding were determined by stopped flow spectroscopy; the rate increased in a sigmoidal manner, with a Hill coefficient of 4, indicating that the pre-steady-state measurements reported cooperativity between all four sites of the dimer rather than just the intermolecular interactions reported by the steady-state measurements. The kinetics of Sb(III) displacement by As(III) revealed that the metalloid-binding sites behave differentially, with the rapid exchange of As(III) for Sb(III) at one site retarding the release of Sb(III) from the other sites. We propose a model involving the sequential binding and release of metalloids by the four binding sites of dimeric ArsD, with only one site releasing free metalloids

    A kinetic model for the action of a resistance efflux pump

    Get PDF
    ArsA is the catalytic subunit of the arsenical pump, coupling ATP hydrolysis to the efflux of arsenicals through the ArsB membrane protein. It is a paradigm for understanding the structure-function of the nucleotide binding domains (NBD) of medically important efflux pumps, such as P-glycoprotein, because it has two sequence-related, interacting NBD, for which the structure is known. On the basis of a rigorous analysis of the pre-steady-state kinetics of nucleotide binding and hydrolysis, we propose a model in which ArsA alternates between two mutually exclusive conformations as follows: the ArsA1 conformation in which the A1 site is closed but the A2 site open; and the ArsA2 conformation, in which the A1 and A2 sites are open and closed, respectively. Antimonite elicits its effects by sequestering ArsA in the ArsA1 conformation, which catalyzes rapid ATP hydrolysis at the A2 site to drive ArsA between conformations that have high (nucleotide-bound ArsA) and low affinity (nucleotide-free ArsA) for Sb(III). ArsA potentially utilizes this process to sequester Sb(III) from the medium and eject it into the channel of ArsB

    Tripartite efflux pumps: energy is required for dissociation, but not assembly or opening of the outer membrane channel of the pump

    Get PDF
    The MtrCDE multidrug pump, from Neisseria gonorrhoeae, is assembled from the inner and outer membrane proteins MtrD and MtrE, which are connected by the periplasmic membrane fusion protein MtrC. Although it is clear that MtrD delivers drugs to the channel of MtrE, it remains unclear how drug delivery and channel opening are connected. We used a vancomycin sensitivity assay to test for opening of the MtrE channel. Cells expressing MtrE or MtrE-E434K were insensitive to vancomycin; but became moderately and highly sensitive to vancomycin respectively, when coexpressed with MtrC, suggesting that the MtrE channel opening requires MtrC binding and is energy-independent. Cells expressing wild-type MtrD, in an MtrCE background, were vancomycin-insensitive, but moderately sensitive in an MtrCE-E434K background. The mutation of residues involved in proton translocation inactivated MtrD and abolished drug efflux, rendered both MtrE and MtrE-E434K vancomycin-insensitive; imply that the pump-component interactions are preserved, and that the complex is stable in the absence of proton flux, thus sealing the open end of MtrE. Following the energy-dependent dissociation of the tripartite complex, the MtrE channel is able to reseal, while MtrE-E434K is unable to do so, resulting in the vancomycin-sensitive phenotype. Thus, our findings suggest that opening of the OMP via interaction with the MFP is energy-independent, while both drug export and complex dissociation require active proton flux

    Identification of oligomerization and drug-binding domains of the membrane fusion protein EmrA

    Get PDF
    Many pathogenic Gram-negative bacteria possess tripartite transporters that catalyze drug extrusion across the inner and outer membranes, thereby conferring resistance. These transporters consist of inner (IMP) and outer (OMP) membrane proteins, which are coupled by a periplasmic membrane fusion (MFP) protein. However, it is not know whether the MFP translocates the drug between the membranes, by acting as a channel, or whether it brings the IMP and OMP together, facilitating drug transfer. The MFP EmrA has an elongated periplasmic domain, which binds transported drugs, and is anchored to the inner membrane by a single -helix, which contains a leucine zipper dimerization domain. Consistent with CD and hydrodynamic analyses, the periplasmic domain is predicted to be composed of a -sheet subdomain and an -helical coiled-coil. We propose that EmrA forms a trimer in which the coiled-coils radiate across the periplasm, where they could sequester the OMP TolC. The "free" leucine zipper in the EmrA trimer might stabilize the interaction with the IMP EmrB, which also possesses leucine zipper motifs in the putative N- and C-terminal helices. The -sheet subdomain of EmrA would sit at the membrane surface adjacent to the EmrB, from which it receives the transported drug, inducing a conformational change that triggers the interaction with the OMP

    MacB ABC transporter is a dimer whose ATPase activity and macrolide-binding capacity are regulated by the membrane fusion protein MacA

    Get PDF
    Gram-negative bacteria utilize specialized machinery to translocate drugs and protein toxins across the inner and outer membranes, consisting of a tripartite complex composed of an inner membrane secondary or primary active transporter (IMP), a periplasmic membrane fusion protein, and an outer membrane channel. We have investigated the assembly and function of the MacAB/TolC system that confers resistance to macrolides in Escherichia coli. The membrane fusion protein MacA not only stabilizes the tripartite assembly by interacting with both the inner membrane protein MacB and the outer membrane protein TolC, but also has a role in regulating the function of MacB, apparently increasing its affinity for both erythromycin and ATP. Analysis of the kinetic behavior of ATP hydrolysis indicated that MacA promotes and stabilizes the ATP-binding form of the MacB transporter. For the first time, we have established unambiguously the dimeric nature of a noncanonic ABC transporter, MacB that has an N-terminal nucleotide binding domain, by means of nondissociating mass spectrometry, analytical ultracentrifugation, and atomic force microscopy. Structural studies of ABC transporters indicate that ATP is bound between a pair of nucleotide binding domains to stabilize a conformation in which the substrate-binding site is outward-facing. Consequently, our data suggest that in the presence of ATP the same conformation of MacB is promoted and stabilized by MacA. Thus, MacA would facilitate the delivery of drugs by MacB to TolC by enhancing the binding of drugs to it and inducing a conformation of MacB that is primed and competent for binding TolC. Our structural studies are an important first step in understanding how the tripartite complex is assembled

    The crystal structure of the outer membrane protein VceC from the bacterial pathogen Vibrio cholerae at 1.8 Ã… resolution

    Get PDF
    Multidrug resistance in Gram-negative bacteria arises in part from the activities of tripartite drug efflux pumps. In the pathogen Vibrio cholerae, one such pump comprises the inner membrane proton antiporter VceB, the periplasmic adaptor VceA, and the outer membrane channel VceC. Here, we report the crystal structure of VceC at 1.8 Ã… resolution. The trimeric VceC is organized in the crystal lattice within laminar arrays that resemble membranes. A well resolved detergent molecule within this array interacts with the transmembrane -barrel domain in a fashion that may mimic proteinlipopolysaccharide contacts. Our analyses of the external surfaces of VceC and other channel proteins suggest that different classes of efflux pumps have distinct architectures. We discuss the implications of these findings for mechanisms of drug and protein export

    The structure and function of drug pumps

    No full text
    Our understanding of the exact mechanisms used by the transmembrane protein pumps that confer cellular resistance to cytotoxic drugs has improved enormously with the recent determination of the structures of three Escherichia coli transporters, two belonging to the ATP-binding cassette (ABC) superfamily and one to the resistance-nodulation-cell division (RND) family. Although these studies do not provide an insight into how drug pumps can recognize several structurally unrelated drugs, important advances have been also made in this area. Information on the molecular basis of multidrug recognition has been provided by determining the structure of transcriptional regulators that can bind, often structurally unrelated, cytotoxic drugs and control the expression of drug pumps

    The structure and function of drug pumps: an update

    No full text
    Our understanding of the exact mechanisms used by the transmembrane protein pumps that confer cellular resistance to cytotoxic drugs has improved enormously with the recent determination of the structures of three Escherichia coli transporters, two belonging to the ATP-binding cassette (ABC) superfamily and one to the resistance-nodulation-cell division (RND) family. Although these studies do not provide an insight into how drug pumps can recognize several structurally unrelated drugs, important advances have been also made in this area. Information on the molecular basis of multidrug recognition has been provided by determining the structure of transcriptional regulators that can bind, often structurally unrelated, cytotoxic drugs and control the expression of drug pumps

    Microbial and viral drug resistance mechanisms

    No full text
    Microorganisms and viruses have developed numerous resistance mechanisms that enable them to evade the effect of antimicrobials and antivirals. As a result, many have become resistant to almost every available means of treatment. This problem, although not new, is becoming increasingly acute and it is now clear that a fundamental understanding of the mechanisms that microbes and viruses deploy in the development of resistance is essential if we are to gain new insights into ways to combat this problem

    The pathobiology of Paracoccidioides brasiliensis

    No full text
    Paracoccidioides brasiliensis causes one of the most prevalent systemic mycoses in Latin America--paracoccidioidomycosis. It is a dimorphic fungus that undergoes a complex transformation in vivo, with mycelia in the environment producing conidia, which probably act as infectious propagules upon inhalation into the lungs, where they transform to the pathogenic yeast form. This transition is readily induced in vitro by temperature changes, resulting in modulation of the composition of the cell wall. Notably, the polymer linkages change from beta-glucan to alpha-glucan, possibly to avoid beta-glucan triggering the inflammatory response. Mammalian oestrogens inhibit this transition, giving rise to a higher incidence of disease in males. Furthermore, the susceptibility of individuals to paracoccidioidomycosis has a genetic basis, which results in a depressed cellular immune response in susceptible patients; resistance is conferred by cytokine-stimulated granuloma formation and nitric oxide production. The latency period and persistence of the disease and the apparent lack of efficacy of humoral immunity are consistent with P. brasiliensis existing as a facultative intracellular pathogen
    corecore