2,958 research outputs found
Epitope recognition of peptide-imprinted polymers for Regenerating protein 1 (REG1)
Molecularly imprinted polymers (MIPs) were developed to replace natural antibodies with a cost-effective and durable synthetic material. Molecular imprinting of proteins conventionally utilizes the whole protein as the template, which is complex (as many different epitopes may be imprinted) and expensive. In this work, seven peptides (13–18 amino acids) were synthesized and used as templates for the imprinting and recognition of Regenerating Protein 1 (REG1). REG1 is involved in the proliferation and differentiation of diverse cell types, and was recently described as a urinary biomarker for pancreatic ductal adenocarcinoma (PDAC). Peptide-imprinted poly(ethylene-co-vinyl alcohol)s (PIPs), containing four different mole fractions of ethylene were cast on screen-printed electrodes to find the optimum composition for both the sensing and the extraction of REG1 in an E. coli culture medium. Peptides with fewer than 16 amino acids and two or three aromatic and hydrophobic groups have a higher affinity for MIPs of poly(ethylene-co-vinyl alcohol) (EVAL) with 27 mol% of ethylene, while those with four aromatic and hydrophobic groups have a higher affinity for MIPs with EVALs that contain 32 mol% of ethylene. The peptide / EVAL combination that maximized both imprinting effectiveness and response to REG1B was the sequence NEDRETWVDADLY imprinted into 32 mol% EVAL. This EVAL composition and template peptide were then modified by incorporation of magnetic nanoparticles, thus extending applications for PIPs to include extraction of REG1 protein from E. coli culture medium
Submergence of the Sidebands in the Photon-assisted Tunneling through a Quantum Dot Weakly Coupled to Luttinger Liquid Leads
We study theoretically the photon-assisted tunneling through a quantum dot
weakly coupled to Luttinger liquids (LL) leads, and find that the zero bias dc
conductance is strongly affected by the interactions in the LL leads. In
comparison with the system with Fermi liquid (FL) leads, the sideband peaks of
the dc conductance become blurring for 1/2<g<1, and finally merge into the
central peak for g<1/2, (g is the interaction parameter in the LL leads). The
sidebands are suppressed for LL leads with Coulomb interactions strong enough,
and the conductance always appears as a single peak for any strength and
frequency of the external time-dependent field. Furthermore, the quenching
effect of the central peak for the FL case does not exist for g<1/2.Comment: 9 pages, 4 figure
Searching a bitstream in linear time for the longest substring of any given density
Given an arbitrary bitstream, we consider the problem of finding the longest
substring whose ratio of ones to zeroes equals a given value. The central
result of this paper is an algorithm that solves this problem in linear time.
The method involves (i) reformulating the problem as a constrained walk through
a sparse matrix, and then (ii) developing a data structure for this sparse
matrix that allows us to perform each step of the walk in amortised constant
time. We also give a linear time algorithm to find the longest substring whose
ratio of ones to zeroes is bounded below by a given value. Both problems have
practical relevance to cryptography and bioinformatics.Comment: 22 pages, 19 figures; v2: minor edits and enhancement
3N Scattering in a Three-Dimensional Operator Formulation
A recently developed formulation for a direct treatment of the equations for
two- and three-nucleon bound states as set of coupled equations of scalar
functions depending only on vector momenta is extended to three-nucleon
scattering. Starting from the spin-momentum dependence occurring as scalar
products in two- and three-nucleon forces together with other scalar functions,
we present the Faddeev multiple scattering series in which order by order the
spin-degrees can be treated analytically leading to 3D integrations over scalar
functions depending on momentum vectors only. Such formulation is especially
important in view of awaiting extension of 3N Faddeev calculations to
projectile energies above the pion production threshold and applications of
chiral perturbation theory 3N forces, which are to be most efficiently treated
directly in such three-dimensional formulation without having to expand these
forces into a partial wave basis.Comment: 25 pages, 0 figure
Using an Ellipsoid Model to Track and Predict the Evolution and Propagation of Coronal Mass Ejections
We present a method for tracking and predicting the propagation and evolution
of coronal mass ejections (CMEs) using the imagers on the STEREO and SOHO
satellites. By empirically modeling the material between the inner core and
leading edge of a CME as an expanding, outward propagating ellipsoid, we track
its evolution in three-dimensional space. Though more complex empirical CME
models have been developed, we examine the accuracy of this relatively simple
geometric model, which incorporates relatively few physical assumptions,
including i) a constant propagation angle and ii) an azimuthally symmetric
structure. Testing our ellipsoid model developed herein on three separate CMEs,
we find that it is an effective tool for predicting the arrival of density
enhancements and the duration of each event near 1 AU. For each CME studied,
the trends in the trajectory, as well as the radial and transverse expansion
are studied from 0 to ~.3 AU to create predictions at 1 AU with an average
accuracy of 2.9 hours.Comment: 18 pages, 11 figure
Pair excitations and the mean field approximation of interacting Bosons, I
In our previous work \cite{GMM1},\cite{GMM2} we introduced a correction to
the mean field approximation of interacting Bosons. This correction describes
the evolution of pairs of particles that leave the condensate and subsequently
evolve on a background formed by the condensate. In \cite{GMM2} we carried out
the analysis assuming that the interactions are independent of the number of
particles . Here we consider the case of stronger interactions. We offer a
new transparent derivation for the evolution of pair excitations. Indeed, we
obtain a pair of linear equations describing their evolution. Furthermore, we
obtain apriory estimates independent of the number of particles and use these
to compare the exact with the approximate dynamics
Quantum saturation and condensation of excitons in CuO: a theoretical study
Recent experiments on high density excitons in CuO provide evidence for
degenerate quantum statistics and Bose-Einstein condensation of this nearly
ideal gas. We model the time dependence of this bosonic system including
exciton decay mechanisms, energy exchange with phonons, and interconversion
between ortho (triplet-state) and para (singlet-state) excitons, using
parameters for the excitonic decay, the coupling to acoustic and low-lying
optical phonons, Auger recombination, and ortho-para interconversion derived
from experiment. The single adjustable parameter in our model is the
optical-phonon cooling rate for Auger and laser-produced hot excitons. We show
that the orthoexcitons move along the phase boundary without crossing it (i.e.,
exhibit a ``quantum saturation''), as a consequence of the balance of entropy
changes due to cooling of excitons by phonons and heating by the non-radiative
Auger two-exciton recombination process. The Auger annihilation rate for
para-para collisions is much smaller than that for ortho-para and ortho-ortho
collisions, explaining why, under the given experimental conditions, the
paraexcitons condense while the orthoexcitons fail to do so.Comment: Revised to improve clarity and physical content 18 pages, revtex,
figures available from G. Kavoulakis, Physics Department, University of
Illinois, Urban
Dissipative Dynamics of a Josephson Junction In the Bose-Gases
The dissipative dynamics of a Josephson junction in the Bose-gases is
considered within the framework of the model of a tunneling Hamiltonian. The
effective action which describes the dynamics of the phase difference across
the junction is derived using functional integration method. The dynamic
equation obtained for the phase difference across the junction is analyzed for
the finite temperatures in the low frequency limit involving the radiation
terms. The asymmetric case of the Bose-gases with the different order
parameters is calculated as well
Treatment of backscattering in a gas of interacting fermions confined to a one-dimensional harmonic atom trap
An asymptotically exact many body theory for spin polarized interacting
fermions in a one-dimensional harmonic atom trap is developed using the
bosonization method and including backward scattering. In contrast to the
Luttinger model, backscattering in the trap generates one-particle potentials
which must be diagonalized simultaneously with the two-body interactions.
Inclusion of backscattering becomes necessary because backscattering is the
dominant interaction process between confined identical one-dimensional
fermions. The bosonization method is applied to the calculation of one-particle
matrix elements at zero temperature. A detailed discussion of the validity of
the results from bosonization is given, including a comparison with direct
numerical diagonalization in fermionic Hilbert space. A model for the
interaction coefficients is developed along the lines of the Luttinger model
with only one coupling constant . With these results, particle densities,
the Wigner function, and the central pair correlation function are calculated
and displayed for large fermion numbers. It is shown how interactions modify
these quantities. The anomalous dimension of the pair correlation function in
the center of the trap is also discussed and found to be in accord with the
Luttinger model.Comment: 19 pages, 5 figures, journal-ref adde
Anomalous Zn- and Ni-substitution effects on superconductivity in the superconducting weak ferromagnets RuSr2RCu2O8 (R = Gd, Eu)
100學年度研究獎補助論文[[abstract]]The effect of magnetic Ni and non-magnetic Zn impurities on superconducting transition temperature Tc in RuSr2R(Cu1−x(Ni, Zn)x)2O8 with R = Gd or Eu (Ni- and Zn-substituted Ru1212Gd(Eu)) was extensively studied. It is found that the suppression rate dTc/dx of RuSr2R(Cu1−x(Ni, Zn)x)2O8 is comparable to that of underdoped YBa2(Cu1−x(Ni, Zn)x)3O7−δ. The suppression of superconductivity in Ni-substituted Ru1212Eu samples is more significant than that in Zn-substituted ones, indicative of Ni being a more effective pair-breaker than Zn. In strong contrast, the magnetic Ni impurity atoms have a weaker effect on superconductivity than non-magnetic Zn atoms in Ru1212Gd, similar to what was observed in the high-Tc cuprates. These intriguing findings strongly suggest that the impurity-induced local disturbance of the 3d-spin correlation at Cu sites around Ni/Zn is distinctly different between Ru1212Gd and Ru1212Eu.[[notice]]補正完畢[[journaltype]]國外[[incitationindex]]SCI[[booktype]]紙本[[countrycodes]]NL
- …
