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Abstract

Molecularly imprinted polymers (MIPs) were developed to replace natural antibodies 

with a cost-effective and durable synthetic material. Molecular imprinting of proteins 

conventionally utilizes the whole protein as the template, which is complex (as many different 

epitopes may be imprinted) and expensive. In this work, seven peptides (13-18 amino acids) 

were synthesized and used as templates for the imprinting and recognition of Regenerating 

Protein 1 (REG1). REG1 is involved in the proliferation and differentiation of diverse cell 

types, and was recently described as a urinary biomarker for pancreatic ductal 

adenocarcinoma (PDAC). Peptide-imprinted poly(ethylene-co-vinyl alcohol)s (PIPs), 

containing four different mole fractions of ethylene were cast on screen-printed electrodes to 

find the optimum composition for both the sensing and the extraction of REG1 in an E coli 

culture medium. Peptides with fewer than 16 amino acids and two or three aromatic and 

hydrophobic groups have a higher affinity for MIPs of poly(ethylene-co-vinyl alcohol) 

(EVAL) with 27 mole% of ethylene, while those with four aromatic and hydrophobic groups 

have a higher affinity for MIPs with EVALs that contain 32 mole% of ethylene. The peptide / 

EVAL combination that maximized both imprinting effectiveness and response to REG1B 

was the sequence NEDRETWVDADLY imprinted into 32 mol% EVAL. This EVAL 

composition and template peptide were then modified by incorporation of magnetic 

nanoparticles, thus extending applications for PIPs to include extraction of REG1 protein 

from E coli culture medium. 

Keywords: peptide imprinting; Regenerating protein; electrochemical sensing; extraction.                                             
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1. Introduction

The sensing of proteins and their extraction from biological fluids are of great interest in 

the biomedical field.[1] Molecularly imprinted polymers (MIPs) are an attractive and 

inexpensive technology for these applications; they can be coated on the surfaces of 

transducers and nanoparticles and used instead of natural antibodies in the recognition of 

molecules in biosensing[2] and bioseparation.[3] Conventionally, the molecular imprinting of 

proteins (such as lysozyme and albumin)[2] is conducted using whole molecules, but the 

imprinting of peptide epitopes has only recently been demonstrated. For example, the 

imprinting of a 16-residue peptide (lysozyme C, 1.8 kDa) on a porous silica scaffold 

enhanced the binding of the whole protein (lysozyme, 14 kDa).[4] Li’s group extensively 

investigated the imprinting of 9- to 15-mer albumin fragments[5] with zero, one or two 

mutated residues[5-6] for albumin sensing[5, 7] and adsorption.[6b] A peptide with four amino 

acids (YPLG) has been utilized as a template for imprinting MIPs (composed of methacrylic 

acid (MAA) and ethylene glycol dimethylacrylate (EGDMA)), which were then used in the 

recognition of the larger peptide oxytocin.[8] A 15-mer peptide (TQLRYSWKTWGKAKM) 

that contained 90-95 units of the Japanese encephalitis virus nonstructural protein 1 (NS1) has 

been used as a template for the recognition of Dengue virus protein by a quartz crystal 

microbalance (QCM) chip.[9] More recently, multiepitope peptides were imprinted on 

poly(ether sulfone) particles for the simultaneous capture of several model proteins, including 

human serum albumin, immunoglobulin G and transferrin.[10] Shea’s group has synthesized 

imprinted polymer nanoparticles that have a specific binding affinity for the bee toxin melittin 

(Mel), a 26 amino acid peptide.[11] These nanoparticles can capture and clear a target peptide 

toxin in the bloodstream of living mice.[12] Molecularly imprinted polymers can be prepared 

for the recognition of proteins via the generation of peptide-fragment binding sites by semi-
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covalent imprinting and enzymatic digestion.[13] 

MIPs can be combined with electrochemical analysis to make electrochemical 

measurements conveniently and rapidly; this combination is thus useful in a quick screening 

for the optimal composition of MIPs. Piletsky and Turner,[14] Blanco-López et al.,[15] 

McCluskey et al.,[16] Rao and Kala[17] and Suryanarayanan et al.[18] have all separately 

reviewed MIP-based electrochemical sensors. 

In this work, seven peptides (13- to 18-mers) from Regenerating Protein family (REG1A 

and REG1B) were used as templates for molecular imprinting. REG1 proteins were recently 

identified as a biomarkers in urine for early detection of pancreatic adenocarcinoma,[19] and 

are therefore an important and novel target for MIP development. Poly(ethylene-co-vinyl 

alcohol)s, EVALs, that contained four concentrations of ethylene from 27 mole % to 44 mole 

% were utilized to prepare peptide-imprinted polymers (PIPs) by phase inversion, and these 

were then electrochemically analyzed. EVALs were chosen as the templating polymer, owing 

to their advantages of low cost and ease of preparation. Additionally, they form non-covalent 

complexes with template molecules, which allows template removal without the use of 

strongly acidic or basic solvents. Finally, EVALs allow rapid screening of different co-

polymer mole ratios to identify those that offer the strongest binding and/or selectivity. This 

approach – varying MIP composition in a study of multiple peptide templates – should help to 

establish guidelines for MIP design.

MIPs made using optimal ethylene mole ratios of the EVALs for the imprinting of the 

seven peptides were then used to sense REG1B in E coli. culture medium. Finally, magnetic 

peptide-imprinted polymer nanoparticles were prepared and characterized. These PIP-based 

sensors with incorporated magnetic nanoparticles were then successfully used for the 

extraction of REG1B from an E coli. culture medium.
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2. Experimental Section

2.1 Reagents and chemicals 

In Table 1, peptides NEDRETWVDADLY (Peptide 7), KESGTDDFNVWIG (Peptide 

5), KSWGIGAPSSVNPGYCVS (Peptide 3), SSTGFQKWKDVPCEDK (Peptide 1) of 

REG1A; SCSGFKKWKDESCEKK (Peptide 2), KSWDTGSPSSANAGYCAS (Peptide 4), 

KESSTDDSNVWIG (Peptide 6) of REG1B were ordered from Yao-Hong Biotechnology Inc. 

(HPLC grade, New Taipei City, Taiwan). Sodium dodecyl sulphate (SDS) and poly(ethylene-

co-vinyl alcohol) (abbreviated as EVAL) with ethylene 27, 32, 38 and 44 mole % were from 

Sigma-Aldrich Co. (St. Louis, MO). Dimethyl sulfoxide (DMSO) was purchased from 

Panreac (Barcelona, Spain). Potassium ferrocyanide and potassium ferricyanide were both 

from J.T. Baker Chemical Co. (Center Valley, PA). Potassium chloride was from Showa 

Chemical Industry Co., Ltd. (Tokyo, Japan). De-ionized water, produced by a PURELAB 

Ultra (ELGA, Albania), used in the preparation of buffers and for rinse solutions was 18.2 

MΩ-cm in resistivity. Human REG1B cloned in Escherichia coli (E. coli) (#g1004044D06) 

was purchased from Bioresource Collection and Research Center (BCRC), Hsinchu, Taiwan. 

The bacterial culture medium was prepared by adding 25g LB broth powder (BD DifcoTM) in 

1L deionized water, which was autoclaved for 2 h at 121 0C and 1.25 atm, and cooled to room 

temperature. Ampicillin (Sigma-Aldrich) 0.1 g was added to the culture medium before use. 

2.2 Preparation and characterization of peptide-imprinted polymers coated sensing 

chips 

The preparation protocol for forming peptide-imprinted (PIPs) and non-imprinted 

(NIPs) polymeric thin films on the working electrodes were adapted from previous reports,[20] 
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and include three steps; (1) Two microliters of the EVAL solution with or without 1.0 mg/mL 

of template peptides were pipetted on the working gold substrate of a screen-printed electrode 

(4 mm diameter, DropSens, Spain); (2) Electrodes were placed in an oven at 50 oC for 6 h to 

enhance the evaporation of DMSO; and then (3) the template peptide was removed by 

washing with 10 mL of 0.1 wt % aqueous SDS and DI water three times. 

The electrochemical analysis was performed by sample injection into a flow-cell (DRP-

FLWCL, DropSens, Spain) for screen-printed electrodes (4 mm diameter, DropSens, Spain). 

The working, counter and Ag/AgCl reference electrodes were covered by injecting ca.10 L 

of an aqueous solution of 500 mM KCl, 20 mM K4Fe(CN)6 and 20 mM K3Fe(CN)6. The 

electrochemical reactions were controlled and monitored with a potentiostat (608-1A, CH 

Instruments, Inc., Austin, TX). The current response of the imprinted polymeric sensing 

electrodes was assessed using cyclic voltammetry. The potential was scanned from -0.6 V to 

+0.6 V at 0.1 V/s and the effects of imprinted peptides, interferent molecules and real samples 

on the peak currents for the ferri-/ ferrocyanide system were recorded. All measurements in 

this work were carried out with at least two replicates; data are expressed as means and 

standard deviations.

Peptide- and non-imprinted EVAL films were freeze-dried before examination by a 

scanning electron microscope (Hitachi S4800, Hitachi High-Technologies Co., Tokyo, Japan) 

and electron spectroscopy for chemical analysis (ESCA). ESCA (Axis Ultra DLD, Kratos 

Analytical Inc., Manchester, UK) was employed to measure the elemental composition of the 

PIP and NIP films. 

2.3 Collection of E coli. Culture Medium Containing REG1B
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One milliliter E. coli (106 cell/mL) was added to 200 mL fresh LB medium in a 500 mL 

flash bottle and incubated overnight. The E. coli culture was further incubated at 30°C for 10 

days in a shaking incubator, by which time the medium became noticeably turbid owing to 

the growth of the E. coli culture. The E. coli was then separated from the medium by 

centrifugation (Hsiangtai, CN-1000, Taiwan) at 2000 rpm for 15 min.

2.4 Synthesis and Characterization of Magnetic Peptide-imprinted Polymer Composite 

Nanoparticles (MPIPs). 

Magnetic nanoparticles (MNPs) were prepared by co-precipitation using a mixture of 

iron (III) chloride 6-hydrate and iron (II) sulfate 7-hydrate by adding sodium hydroxide 

(Massart method).[21] MNPs were freeze-dried, modified with hexamethyldisilazane (HMDS) 

(ca. 5 L/mg) and mixed with 0.1 wt% EVAL/DMSO solution at 20 mg/mL. The mixture 

with and without 1 mg/mL of peptide was dispersed in 10 mL non-solvent solution (deionized 

water/isopropanol 2/3 in weight) for EVAL at 5 0C. Peptides were removed from magnetic 

nanoparticles using a magnetic plate and washing with 0.1 wt % SDS solution 10 min and 

then deionized water 10 min three times. 

Magnetic and peptide-imprinted polymer composite nanoparticles were monitored by a 

dynamic light scattering (DLS) particle sizer (90Plus, Brookhaven Instrument Co., New 

York).[21] The magnetic nanoparticles, peptide-imprinted magnetic EVAL composite 

nanoparticles before and after removal of template were freeze dried and their magnetization 

monitored with a magnetic property measurement system (MPMS XL-7, Quantum Design, 

San Diego, CA) at 298 K in ±15000 Gauss. Magnetic peptide-imprinted composite particles 

were stained with uranyl acetate and then examined and photographed in transmission 

electron microscopy (TEM, Hitachi-700, Hitachi Co., Japan) operated at 100 kV accelerating 
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voltage.

2.5 Extraction of REG1B by Magnetic Peptide-imprinted EVAL Nanoparticles.

    Extraction of REG1B from E coli culture medium was performed using a KingFisher™ 

mL purification system (Thermo) with steps as follows: (1) MPIP particle collection: peptide 

7 MPIPs (1mg) were placed in the first tube with 1 mL deionized water. The magnetic bars 

together with the tip comb(s) move slowly up and down into the tubes for 10 min. MPIPs 

were then collected on the walls of the tips. The magnetic rods together with the tip comb(s), 

having collected the magnetic particles, can be lifted out of the tubes and transferred into the 

next tubes. (2) MPIPs particles release and extraction: The magnetic bars are lifted off and the 

tip combs are lowered into the E. coli culture medium. MPIPs are released by moving the tip 

comb(s) up and down for 10 min to complete the mixing and adsorption of REG1B from the 

E. coli culture medium. (3) Release of REG1B: MPIPs adsorbed with REG1B were then 

transferred to 1 mL deionized water from the previous tube and vigorously shaken for 10 min. 

An enzyme-linked immuno-sorbent assay (ELISA) kit SEK11638 (Sino Biological Inc.; 

http://tw.sinobiological.com/) was employed to examine the REG1B concentration;[22] the 

total protein was measured using a Protein Quantification Assay  (740967.50, MACHEREY-

NAGEL GmbH & Co. KG; http://www.mn-net.com/tabid/10972/default.aspx). All 

measurements in this work were carried out with at least two replicates; data are expressed as 

means and standard deviations.

3. Results and Discussion

Peptides of Regenerating Protein 1 (REG1) that have been studied are shown in Table 1. 

The candidate peptides were taken from various internal sequences within the full protein and 

http://tw.sinobiological.com/
http://www.mn-net.com/tabid/10972/default.aspx
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were 13-18 amino acids long. A small difference in non-homologous amino-acids of REG1A 

and REG1B is in position 54 where a positively-charged Arginine (R) in REG1A is proline in 

REG1B. REG1A is a polar protein, with negatively-charged amino acids in positions 52/30 

(secreted protein/crystal structure positions), 53/31, 55/33 and 59/37 (EDED) that have been 

proposed to form a contiguous parallel stretch on the protein surface. The position 54/32 (R) 

is also proposed to contribute to the charge on the protein surface.

Peptides 2, 4, and 6 (from Reg1Α) have been used as templates in a previous study.[22] 

The current work studied peptides 1, 3, 5, and 7 (from Reg1Β), with a focus on peptide 7. The 

solubility of peptide 7 should be very good owing to its 6 charged (EDREDD) and 3 polar 

(NTY) amino acids. Also, there are 2 bulky aromatic amino acids (WY) within the sequence. 

The difference between REG1A/REG1B compared to REG3G/REG3A is substantial, thus 

cross-reaction with REG3 is unlikely. Structurally, the first part of the peptide 7 (7 amino 

acids, p51-57) forms an extended loop, whereas the second part of the peptide 7 (positions 58-

63) has an alpha-helix structure. 

Cyclic voltammetry was used to screen for the optimal composition (ethylene mole %) 

of the EVALs. Figure 1(a) shows that the peak current occurred at a potential of 300 mV (for 

E. coli culture medium). Figure 1(b) shows the variation in current density with EVAL 

composition, for PIPs recognizing peptide 7, when electrochemically measuring a peptide 

concentration of 1.0 ng/mL. The EVAL that contained 32 ethylene mole % yielded the largest 

current density differences: 68.26 ± 8.45 and 26.38 ± 5.62 μA/cm2, for the PIP and the NIP 

respectively. Composition screening was also performed on peptides 1,3, and 5; the results for 

all peptides are summarized in Figure S1. Dark bars indicate current densities with non-

imprinted polymers; total bar height shows the current density with the imprinted films. 

Current density using non-imprinted films was generally 20-24 μA/cm2; imprinting 
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effectiveness (the ratio of the current density difference on MIPs to that on NIPs) varied from 

< 2 to better than 3 for optimal ethylene contents. Uncertainties (from repeated 

measurements) were ±1-4 μA/cm2. Table 1 lists the optimal compositions of EVALs of 

peptides for imprinting. Though a clear trend is difficult to discern, it appears that among the 

shorter peptides (< 18 amino acids), those with lower aromatic / hydrophobic content are 

better imprinted with the lower ethylene content EVAL (27 mole %). This is perhaps 

unsurprising: lower hydrophobicity implies greater hydrophilicity, and the vinyl alcohol 

group adds hydrophilicity (and hydrogen-bonding capabilities) to the polymer. Peptides with 

more than 16 amino acids may undergo intramolecular interactions, which would influence 

their interaction with imprinting polymers. 

The effect of the concentration of peptides and REG1B on MIP-coated electrodes was 

then examined by cyclic voltammetry. Figure 1(c) plots the cyclic voltammograms (CVs) of 

various concentrations of peptide 7 on PIP electrodes, showing that the current density 

significantly increases with the concentration of peptide 7. Figure 1(d) depicts the comparison 

of the electrochemical signals of REG1B and peptide 7 titrated to the peptide 7 MIP sensor. 

As reported previously,[22] at lower concentration (less than 1.0 pg/mL), the response of 

REG1B to peptide MIP sensors is very close to that of peptides, suggesting that the entire 

protein can participate in electron transfer processes. At higher concentrations, the response 

falls off slightly for the protein compared to the imprinted peptide. In both cases, the current 

response varies roughly logarithmically with the peptide or protein concentration.

The surface morphologies and compositions of PIPs were examined by SEM, ESCA and 

AFM, and shown in Figs. 2(a)-(b), (c) and (d)-(f), respectively. The surface morphologies of 

peptide 7-imprinted polymers before and after template removal, Figs. 2(a) and (b), were 

obtained by SEM, which revealed that the fabricated thin film was almost flat. Fig. 2(c) 
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shows an ESCA analysis, which demonstrated that peptide 7 could be almost entirely 

removed after the solidification of EVALs by the SDS washing solution. A few peptides may 

become trapped in the EVAL, but this is not likely to affect the sensing of REG1B; these sites 

would be inaccessible to the protein. Figs. 2(d)-(e) show that peptide removal increased the 

mean surface roughness from 1.05 to 1.14 nm; rebinding with 1.0 ng/mL of peptides for 30 

min dramatically increased roughness to 2.77 nm.  

Table 3 shows data that were obtained using E. coli culture medium that contained 

REG1B. Peptides 1, 3, 5 and 7 from sequences of REG1B (in Table 1) were synthesized and 

imprinted onto EVAL-coated electrodes, and calibration curves were made using the 

respective peptides. When measuring REG1B in culture medium, the current density 

differences obtained using peptides 1, 3, and 5 as templates were less than 50 μA/cm2; these 

corresponded to assayed protein concentrations of < 10.52 ± 2.12 ng/mL, respectively. (The 

actual concentration of REG1B was estimated at 78-213 ng/mL using an ELISA assay.) 

Using peptide 7 as template, however, gave a current density difference of 61.56 ± 0.17 

A/cm2, (three samples), corresponding to a REG1B concentration of 112.76 ± 3.99 ng/mL. 

Although all templates were about equally able to recognize themselves, peptide 7 yielded an 

EVAL film with the best response to REG1B. Thus, the epitope recognition of REG1B using 

peptide 7-imprinted polymer-coated electrodes may have potential in making measurements 

on real urine samples. 

The high affinity for peptide 7 of EVAL that contained 32 mole % of ethylene was 

exploited in the preparation of peptide 7-imprinted polymer-coated magnetic nanoparticles 

(MPIPs). Figure 3 displays the characteristics and reusability of MPIPs, obtained using DLS, 

TEM, and SQUID. Figure 3(a) compares the size distributions of MPIPs. The mean sizes of 

magnetic nanoparticles and magnetic non-imprinted polymeric particles were 50 and 90 nm, 
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respectively. Template removal reduced the mean sizes of MPIP nanoparticles from around 

200 nm to almost that of NIPs. Interestingly, rebinding peptides on MPIPs may have induced 

partial aggregation of MPIPs. (It is possible that the aggregation may be inhibited by either 

limiting the number of imprinted surface cavities or the concentration of peptide.) This 

phenomenon was also evident from the TEM image (Fig. 3(b)). The magnetic nanoparticles 

inside the MPIPs were superparamagnetic and coating with PIPs reduced their saturated 

magnetization from approximately 61.2 emu/g to 40.0 emu/g. The binding of peptides on 

MMIP reduced the saturated magnetization from 45.4 to 44.3 emu/g. 

Finally, the E coli. culture medium was repeatedly extracted with the MPIP 

nanoparticles and REG1B was then released to the ferri-/ ferrocyanide solution for 

electrochemical measurement. Fig. 3(d) presents the reusability of the MPIPs, showing that 

for at least the first five cycles, the recovery of REG1B in the E. coli culture medium 

exceeded 80%. The recovery of REG1B was calculated (with calibration curve shown in 

Fig1(d)) from the REG1B concentration measured by the PIPs-coated electrodes in the 

released solution, compared to that obtained in the first extraction by MPIPs nanoparticles. 

Moreover, the purity of the extracted REG1B, which was defined as the percentage of 

REG1B to total protein amount in the extracted solutions (as determined by an ELISA assay 

and a total protein kit, see Materials & Methods), was as high as 83.03 ± 9.30 % in the first 

cycle; further purification is also possible by the same protocols. 

4. Conclusions

Owing to the potential importance of proteins that have been identified as markers for 

cancers, molecularly imprinted polymers (MIPs) have been generated for the sensing and 

extraction of biomarker proteins in biological fluids. Using peptide epitopes instead of 
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complex proteins reduces the cost and may also enhance the exposure of the MIP binding 

sites. However, issues such as the peptide length and hydrophobicity must be examined; 

longer peptides may form inappropriate secondary structures and thus affect the selectivity of 

the MIP. Using electrochemical screening, we found that fewer aromatic and hydrophobic 

amino acids in peptides from REG1B formed better MIPs when a lower mole % of ethylene 

EVAL was used. Although it remains to be seen whether this holds true for other proteins as 

well.

Finally, it is important to note that peptide-imprinted films show dramatic differences 

in their ability to recognize the parent protein, even when those films all recognize their target 

peptides well. Thus, screening a peptide film for its response to the original target protein is 

crucial. After identifying the most effective peptide and EVAL combination for the 

recognition / binding of REG1B, we constructed imprinted polymer particles incorporating 

magnetic nanoparticles. We have also shown that MIPs with incorporated magnetic 

nanoparticles can be employed in the extraction and separation of REG1B protein, which 

proved to be an effective and robust protein isolation method. 
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Legends

Figure 1. (a) Cyclic voltammograms (CVs) of REG1B measured using peptide 7-imprinted 

polymer coated electrodes in a solution of 20 mM potassium ferricyanide (K3[Fe(CN)6]), 20 

mM potassium ferrocyanide ( K4[Fe(CN)6]), and 0.5 M KCl with/without E. coli culture 

medium. (b) Current density difference for the peptide 7-imprinted and non-imprinted 

polymers coated electrode for 1.0 ng/mL and buffer solution of target molecules when 

voltages of 300 mV were applied. The imprinting effectiveness was defined as the ratio of the 

current density difference of peptides on the PIPs to that on the NIPs of the same composition. 

(c) Cyclic voltammetry of peptide 7 solutions measured using peptide 7-imprinted coated 

electrodes using a potentiostat. (d) The calibration curve of peptide 7 and REG1B to peptide 

7-imprinted polymer based sensors, using an applied voltage of 300 mV.

Figure 2. The surface morphology of peptide 7-imprinted polymers (PIPs) prepared using 32 

mole% of ethylene EVAL (a) before and (b) after template removal of peptide 7. (c) Nitrogen 

atomic analysis of above surface by electron spectroscopy for chemical analysis (ESCA). The 

atomic force images of peptide 7-imprinted polymers prepared using 32 mole% of ethylene 

EVAL (d) before, (e) after template removal and (f) rebinding with 1.0 ng/mL of peptide 7. 

Figure 3. (a) Size distribution of magnetic nanoparticles (MNPs), magnetic non-imprinted 

nanoparticles (MNIPs) and magnetic peptide-imprinted nanoparticles (MPIPs) before and 

after template removal, and rebound with peptide. (b) TEM image of the magnetic peptide-

imprinted nanoparticles (MPIPs), the scale bar is 10 nm. (c) The magnetization of magnetic 

nanoparticles (MNPs), and magnetic peptide-imprinted nanoparticles (MPIPs) before and 

after template removal, and rebound with 1.0 ng/mL peptide. (d) The relative recovery of 

REG1B with extraction cycles of REG1B from E coli. culture medium and desorption in 
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ferric/ferrocyanide solution, which was measured electrochemically. (The recovery above 

100% in cycle 2 is within the experimental uncertainty, as shown by the error bars.)
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Tables:

Table 1. The peptides (colored) of Regenerating Proteins used to imprint onto poly(ethylene-

co-vinyl alcohol)s. The last column indicates the results from screening of EVALs for the 

highest imprinting effectiveness.

 Amino acids

Protein Amino acid sequence Peptide
 Total

Aromatic &
Hydrophobic

Optimal 
EVAL

(ethylene %)

Peptide 7 13 4 32

Peptide 5 13 4 32

Peptide 3 18 6 27
Reg1Α

MAQTSSYFMLISCLMFLSQSQ
GQEAQTELPQARISCPEGTNA
YRSYCYYFNEDRETWVDADL
YCQNMNSGNLVSVLTQAEGA
FVASLIKESGTDDFNVWIGLH
DPKKNRRWHWSSGSLVSYK
SWGIGAPSSVNPGYCVSLTS
STGFQKWKDVPCEDKFSFVC
KFKN

Peptide 1 16 6 32

Peptide 6 13 3 27

Peptide 4 18 3 32Reg1Β

MAQTNSFFMLISSLMFLSLSQ
GQESQTELPNPRISCPEGTNA
YRSYCYYFNEDPETWVDADL
YCQNMNSGNLVSVLTQAEGA
FVASLIKESSTDDSNVWIGLH
DPKKNRRWHWSSGSLVSYK
SWDTGSPSSANAGYCASLTS
CSGFKKWKDESCEKKFSFVC
KFKN

Peptide 2 16 2 27
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Table 2. The comparison of Peptide 7 in Regenerating Islet-Derived 1 Alpha (REG1A) 

protein with non-homologous peptides from REG1B and REG3G. REG3 proteins may also 

relate with hepatocellular carcinoma.[23]  
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Table 3. The current measurement of E. coli culture medium by peptide-imprinted EVAL 

coated electrodes. The same E. coli culture medium containing REG1B was pre-diluted 

thousand times before electrochemical analysis. 

Real
Sample

Peptide
imprinted

ΔCurrent (μA/cm2)
Convert 

concentration 
(pg/mL)

Mean concentration 
(pg/mL)

61.36 109.05

61.53 112.247

61.78 116.98

112.76±3.99

47.85 10.25

47.29 9.355

46.09 7.68

9.09±1.30

47.40 10.25

46.92 9.513

46.41 8.78

9.51±0.73

48.13 12.54

46.96 10.70

E.coli 
culture medium

1

45.14 8.32

10.52±2.12
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Scheme 

Scheme 1. The preparation of peptide-imprinted polymers (PIPs) coated electrode and 

magnetic nanoparticles for the epitope recognition of REG1 in E coli culture medium. 
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Lin et al.- Figure 2

(a) (c)

(d) (f)
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Lin et al.- Figure 3
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TOC

Seven peptides (13-18 amino acids) were synthesized and used as templates for imprinting 

and recognition of Regenerating Protein 1 (REG1). Peptide-imprinted poly(ethylene-co-vinyl 

alcohol)s, PIPs, containing four different mole fractions of ethylene were cast on screen-

printed electrodes to find the optimum composition for both the sensing and the extraction of 

REG1 in an E coli culture medium.
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Supplementary materials

Figure S1. Summary of EVAL ethylene content screening of MIPs for peptides 1,3,5, and 
7.  Dark bars indicate current densities with non-imprinted polymers; total bar height shows 
the current density with the imprinted films. Uncertainties (from repeated measurements) 
were ±1-4 μA/cm2. 

 


