23 research outputs found

    Observational Constraints on Teleparallel Dark Energy

    Full text link
    We use data from Type Ia Supernovae (SNIa), Baryon Acoustic Oscillations (BAO), and Cosmic Microwave Background (CMB) observations to constrain the recently proposed teleparallel dark energy scenario based on the teleparallel equivalent of General Relativity, in which one adds a canonical scalar field, allowing also for a nonminimal coupling with gravity. Using the power-law, the exponential and the inverse hyperbolic cosine potential ansatzes, we show that the scenario is compatible with observations. In particular, the data favor a nonminimal coupling, and although the scalar field is canonical the model can describe both the quintessence and phantom regimes.Comment: 19 pages, 6 figures, version accepted by JCA

    Observational constraints on Rastall's cosmology

    Full text link
    Rastall's theory is a modification of General Relativity, based on the non-conservation of the stress-energy tensor. The latter is encoded in a parameter γ\gamma such that γ=1\gamma = 1 restores the usual νTμν=0\nabla_\nu T^{\mu\nu} = 0 law. We test Rastall's theory in cosmology, on a flat Robertson-Walker metric, investigating a two-fluid model and using the type Ia supernovae Constitution dataset. One of the fluids is pressureless and obeys the usual conservation law, whereas the other is described by an equation of state px=wxρxp_x = w_x\rho_x, with wxw_x constant. The Bayesian analysis of the Constitution set does not strictly constrain the parameter γ\gamma and prefers values of wxw_x close to -1. We then address the evolution of small perturbations and show that they are dramatically unstable if wx1w_x \neq -1 and γ1\gamma \neq 1, i.e. General Relativity is the favored configuration. The only alternative is wx=1w_x = -1, for which the dynamics becomes independent from γ\gamma.Comment: Latex file, 14 pages, 6 figures in eps format. Substantial modifications performed, main conclusions change

    Phase-Space analysis of Teleparallel Dark Energy

    Full text link
    We perform a detailed dynamical analysis of the teleparallel dark energy scenario, which is based on the teleparallel equivalent of General Relativity, in which one adds a canonical scalar field, allowing also for a nonminimal coupling with gravity. We find that the universe can result in the quintessence-like, dark-energy-dominated solution, or to the stiff dark-energy late-time attractor, similarly to standard quintessence. However, teleparallel dark energy possesses an additional late-time solution, in which dark energy behaves like a cosmological constant, independently of the specific values of the model parameters. Finally, during the evolution the dark energy equation-of-state parameter can be either above or below -1, offering a good description for its observed dynamical behavior and its stabilization close to the cosmological-constant value.Comment: 23 pages, 4 figures, 5 tables, version published at JCA

    Resolution of dark matter problem in f(T) gravity

    Full text link
    In this paper, we attempt to resolve the dark matter problem in f(T) gravity. Specifically, from our model we successfully obtain the flat rotation curves of galaxies containing dark matter. Further, we obtain the density profile of dark matter in galaxies. Comparison of our analytical results shows that our torsion-based toy model for dark matter is in good agreement with empirical data-based models. It shows that we can address the dark matter as an effect of torsion of the space.Comment: 14 pages, 3 figure

    QCD ghost f(T)-gravity model

    Full text link
    Within the framework of modified teleparallel gravity, we reconstruct a f(T) model corresponding to the QCD ghost dark energy scenario. For a spatially flat FRW universe containing only the pressureless matter, we obtain the time evolution of the torsion scalar T (or the Hubble parameter). Then, we calculate the effective torsion equation of state parameter of the QCD ghost f(T)-gravity model as well as the deceleration parameter of the universe. Furthermore, we fit the model parameters by using the latest observational data including SNeIa, CMB and BAO data. We also check the viability of our model using a cosmographic analysis approach. Moreover, we investigate the validity of the generalized second law (GSL) of gravitational thermodynamics for our model. Finally, we point out the growth rate of matter density perturbation. We conclude that in QCD ghost f(T)-gravity model, the universe begins a matter dominated phase and approaches a de Sitter regime at late times, as expected. Also this model is consistent with current data, passes the cosmographic test, satisfies the GSL and fits the data of the growth factor well as the LCDM model.Comment: 19 pages, 9 figures, 2 tables. arXiv admin note: substantial text overlap with arXiv:1111.726
    corecore