24 research outputs found

    Planet Hunters Tess I: TOI 813, a subgiant hosting a transiting Saturn-sized planet on an 84-day orbit

    Get PDF
    We report on the discovery and validation of TOI 813 b (TIC55525572b), a transiting exoplanet identified by citizen scientists in data from NASA's Transiting Exoplanet Survey Satellite (TESS) and the first planet discovered by the Planet Hunters TESS project. The host star is a bright (V = 10.3 mag) subgiant (R* = 1.94 R☉, M☉ = 1.32 M☉). It was observed almost continuously by TESS during its first year of operations, during which time four individual transit events were detected. The candidate passed all the standard light curve-based vetting checks, and ground-based follow-up spectroscopy and speckle imaging enabled us to place an upper limit of 2 MJup (99 per cent confidence) on the mass of the companion, and to statistically validate its planetary nature. Detailed modelling of the transits yields a period of 83.8911+0.0027-0.0031 d, a planet radius of 6.71 ± 0.38 R⊕ and a semimajor axis of 0.423+0031-0.037 AU. The planet's orbital period combined with the evolved nature of the host star places this object in a relatively underexplored region of parameter space. We estimate that TOI 813 b induces a reflex motion in its host star with a semi-amplitude of ∼6 m s−1, making this a promising system to measure the mass of a relatively long-period transiting planet

    Confocal laser scanning microscopy: using cuticular autofluorescence for high resolution morphological imaging in small crustaceans

    No full text
    The utility of cuticular autofluorescence for the visualization of copepod morphology by means of confocal laser scanning microscopy (CLSM) was examined. Resulting maximum intensity projections give very accurate information on morphology and show even diminutive structures such as small setae in detail. Furthermore, CLSM enables recognition of internal structures and differences in material composition. Optical sections in all layers and along all axes of the specimens can be obtained by CLSM. The facile and rapid preparation method bears no risk of artefacts or damage occurring to the preparations and the visualized specimens can be used for later analyses allowing for the investigation of irreplaceable type specimens or parts of them. These features make CLSM a very effective tool for both taxonomical and ecological studies in small crustaceans; however, the maximum thickness of the specimens is limited to a few hundred micrometers. Three-dimensional models based on CLSM image stacks allow observation of the preparations from all angles and can permit, improve and speed up studies on functional morphology. The visualization method described has a strong potential to become a future standard technique in aquatic biology due to its advantages over conventional light microscopy and scanning electron microscopy
    corecore