18 research outputs found

    Vegetation and floristics of a lowland tropical rainforest in northeast Australia

    Get PDF
    Background: Full floristic data, tree demography, and biomass estimates incorporating non-tree life forms are seldom collected and reported for forest plots in the tropics. Established research stations serve as important repositories of such biodiversity and ecological data. With a canopy crane setup within a tropical lowland rainforest estate, the 42-ha Daintree Rainforest Observatory (DRO) in Cape Tribulation, northern Australia is a research facility of international significance. We obtained an estimate of the vascular plant species richness for the site, by surveying all vascular plant species from various mature-phase, remnant and open vegetation patches within the site. We also integrate and report the demography and basal areas of trees ≥ 10 cm diameter at breast height (dbh) in a new 1- ha core plot, an extension to the pre-existing forest 1-ha plot under the canopy crane. In addition, we report for the canopy crane plot new demography and basal areas for smaller size shrubs and treelets subsampled from nine 20 m quadrats, and liana basal area and abundance from the whole plot. The DRO site has an estimated total vascular plant species richness of 441 species, of which 172 species (39%) are endemic to Australia, and 4 species are endemics to the Daintree region. The 2 x 1-ha plots contains a total of 262 vascular plant species of which 116 (1531 individuals) are tree species ≥ 10 cm dbh. We estimate a stem basal area of 34.9 m ha, of which small stems (tree saplings and shrubs <10cm dbh) and lianas collectively contribute c.4.2%. Comparing the stem density-diversity patterns of the DRO forest with other tropical rainforests globally, our meta-analysis shows that DRO forests has a comparatively high stem density and moderate species diversity, due to the influence of cyclones. These data will provide an important foundation for ecological and conservation studies in lowland tropical forest. New information: We present a floristic checklist, a life form breakdown, and demography data from two 1-ha rainforest plots from a lowland tropical rainforest study site. We also present a meta-analysis of stem densities and species diversity from comparable-sized plots across the tropics

    Vortices on Higher Genus Surfaces

    Full text link
    We consider the topological interactions of vortices on general surfaces. If the genus of the surface is greater than zero, the handles can carry magnetic flux. The classical state of the vortices and the handles can be described by a mapping from the fundamental group to the unbroken gauge group. The allowed configurations must satisfy a relation induced by the fundamental group. Upon quantization, the handles can carry ``Cheshire charge.'' The motion of the vortices can be described by the braid group of the surface. How the motion of the vortices affects the state is analyzed in detail.Comment: 28 pages with 10 figures; uses phyzzx and psfig; Caltech preprint CALT-68-187

    Remarks on the Configuration Space Approach to Spin-Statistics

    Full text link
    The angular momentum operators for a system of two spin-zero indistinguishable particles are constructed, using Isham's Canonical Group Quantization method. This mathematically rigorous method provides a hint at the correct definition of (total) angular momentum operators, for arbitrary spin, in a system of indistinguishable particles. The connection with other configuration space approaches to spin-statistics is discussed, as well as the relevance of the obtained results in view of a possible alternative proof of the spin-statistics theorem.Comment: 18 page

    Testing spatial noncommutativiy via the Aharonov-Bohm effect

    Get PDF
    The possibility of detecting noncommutative space relics is analyzed using the Aharonov-Bohm effect. We show that, if space is noncommutative, the holonomy receives non-trivial kinematical corrections that will produce a diffraction pattern even when the magnetic flux is quantized. The scattering problem is also formulated, and the differential cross section is calculated. Our results can be extrapolated to high energy physics and the bound θ[10TeV]2\theta \sim [ 10 {TeV}]^{-2} is found. If this bound holds, then noncommutative effects could be explored in scattering experiments measuring differential cross sections for small angles. The bound state Aharonov- Bohm effect is also discussed.Comment: 16 pp, Revtex 4, 2 fig, new references added. To appear in PR

    Evolution of whole-body enantiomorphy in the tree snail genus Amphidromus

    Get PDF
    Diverse animals exhibit left–right asymmetry in development. However, no example of dimorphism for the left–right polarity of development (whole-body enantiomorphy) is known to persist within natural populations. In snails, whole-body enantiomorphs have repeatedly evolved as separate species. Within populations, however, snails are not expected to exhibit enantiomorphy, because of selection against the less common morph resulting from mating disadvantage. Here we present a unique example of evolutionarily stable whole-body enantiomorphy in snails. Our molecular phylogeny of South-east Asian tree snails in the genus Amphidromus indicates that enantiomorphy has likely persisted as the ancestral state over a million generations. Enantiomorphs have continuously coexisted in every population surveyed spanning a period of 10 years. Our results indicate that whole-body enantiomorphy is maintained within populations opposing the rule of directional asymmetry in animals. This study implicates the need for explicit approaches to disclosure of a maintenance mechanism and conservation of the genus

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore