26 research outputs found

    Experimental assessment of a novel eutectic binary molten salt-based hexagonal boron nitride nanocomposite as a promising PCM with enhanced specific heat capacity

    Get PDF
    In this study, novel nanocomposites containing the pre-defined mass ratio of binary molten salt (NaNO3-KNO3: 60-40 wt. %) dispersed with hexagonal boron nitride (hBN) nanoparticles with nominal size of 70 nm, were prepared through one-phase preparation method. Four different types of samples including pure binary molten salt and binary molten salt-based hBN nanocomposites with loading concentrations of 0.5, 1 and 1.5 wt. % were prepared. The proposed amount of sodium nitrate and potassium nitrate was added to certain amount of DI water, comprising with 0.5, 1 and 1.5 wt. % concentration of hBN nanoparticles. Scanning electronic microscopy (SEM) was conducted to evaluate the uniformity of the synthesized binary molten salt-based hBN nanocomposites. The SEM images revealed uniform dispersion of hexagonal boron nitride nanoparticles and fractal-like structures were observed clearly. Specific heat capacity (cp) and melting temperature measurements were performed using a differential scanning calorimetry (DSC). The experimental achieved data for melting temperature proved that hexagonal boron nitride nanoparticles do not affect the melting temperature of the synthesized nanocomposites. The experimentally achieved data for the average cp values of the binary molten salt in solid and liquid phases were 1.14 and 1.13 J/g K, respectively. While, the average cp values for the binary molten salt-based hBN nanocomposite with the highest loading concentration of nanoparticles (1.5 wt. %) in solid and liquid phases were 2 and 3.17 J/g K, respectively. The measured average cp value in the liquid phase for binary molten salt-based hBN nanocomposite with the highest loading concentration (1.5 wt. %) of nanoparticles revealed enhancement of ~180% in comparison with pure binary molten salt. Thermal stability measurements expressed enhancement of thermal stability in binary molten salt induced with hBN nanoparticles. Binary molten salt-based hBN nanocomposite with loading concentration of 1.5 wt. % represented ~16% enhancement in thermal stability over the binary molten salt

    Built in self test for RAM using VHDL

    Get PDF
    This project emphasized mainly on software analysis. Modelsim-Altera 6.4a is the software that used to generate every single module of the Built-in-Self-Test (BIST) for Random access Memory (RAM) architecture. There are three key things to be concern in the BIST for RAM which is the Test Pattern Generator (TPG), Output Response Analysis (ORA) and RAM. The output of counter which is a type of TPG is analyzed to provide a pattern for March test algorithm. At the mean time, the ORA compare the output from decoder and the RAM output itself which modeled under the theory of numerical autonomy of error vectors from the circuit under test. The output of ORA, the comparator, will show pass or fail for faulty detection of RAM. The system has been successfully developed and vector waveform is used to examine the result of the system. From the result obtained, it showed that the system is working as expected with satisfactory result

    Molecular dynamic simulation on the thermal conductivity of nanofluids in aggregated and non-aggregated states

    Get PDF
    Nanofluids are engineered by suspending nanoparticles in convectional heat transfer fluids to enhance thermal conductivity. This study is aimed at identifying the role of nanoparticle aggregation in enhancing the thermal conductivity of nanofluids. Molecular dynamic simulation with the Green Kubo method was employed to compute thermal conductivity of nanofluids in aggregated and non-aggregated states. Results show that the thermal conductivity enhancement of nanofluids in an aggregated state is higher than in a non-aggregated state, by up to 35. The greater enhancement in aggregated nanofluids is attributed to both higher collision among nanoparticles and increases in the potential energy of nanoparticles

    Improving total nitrogen removal using a neural network ammonia-based aeration control in activated sludge process

    Get PDF
    Aeration control is a way to have a wastewater treatment plant (WWTP) that uses less energy and produces higher effluent quality to meet state and federal regulations. The goal of this research is to develop a neural network (NN) ammonia-based aeration control (ABAC) that focuses on reducing total nitrogen and ammonia concentration violations by regulating dissolved oxygen (DO) concentration based on the ammonia concentration in the final tank, rather than maintaining the DO concentration at a set elevated value, as most studies do. Simulation platform used in this study is Benchmark Simulation Model No. 1, and the NN ABAC is compared to the Proportional-Integral (PI) ABAC and PI controller. In comparison to the PI controller, the simulation results showed that the proposed controller has a significant improvement in reducing the AECI up to 23.86%, improving the EQCI up to 1.94%, and reducing the overall OCI up to 4.61%. The results of the study show that the NN ABAC can be utilized to improve the performance of a WWTP’s activated sludge system

    Crosslinked thermoelectric hydro-ionogels:A new class of highly conductive thermoelectric materials

    Get PDF
    In this work, a new class of highly-conductive chemically cross-linked gel has been synthesized by the confinement of water and IL N, N, N triethyl octyl ammonium bromide ([N2228] Br) in polyethylene glycol dimethacrylate (PEGDMA) matrix, using in situ thermally initiated radical polymerization loaded with 1 wt% free radical initiator azobisisobutyronitrile (AIBN). This novel gel was named as hydro-ionogel (HIG). The thermoelectric properties of HIG such as ionic conductivity, Seebeck coefficient, and thermal conductivity were measured and owing to its high thermoelectric performance, we referred to this as crosslinked thermoelectric hydro-ionogel, henceforth will be denoted by X-TEHIG. For all the measurements, coin cells were fabricated using commercial LIR 2032 stainless steel battery casings with X-TEHIG sandwiched between the two graphene electrodes. The ionic conductivity of X-TEHIG was examined via AC impedance spectroscopy technique by using a Gamry apparatus. Remarkably, the ionic conductivity of X-TEHIG was higher than that of neat [N2228] Br. A linear increase in ionic conductivity of X-TEHIG as a function of temperature was recorded that showed a considerably higher value of 74 mScm−1 at 70 °C. The origin of this high conductivity is attributed to interactions between PEGDMA monomers and cations and anions of the IL and formation of hydrogen bonds between water and Br− anion, OH⋯Br−. X-TEHIG demonstrated a higher Seebeck coefficient of 1.38 mVK−1. The Fourier transform infrared (FTIR) spectroscopy results revealed the successful polymerization of X-TEHIG by the disappearance of CC peak of methacrylate group in the spectrum of PEGDMA. These results suggest that X-TEHIG may be a potential candidate for thermoelectric applications owing to their high values of ionic conductivity and Seebeck coefficient

    Improved thermo-physical properties and energy efficiency of hybrid PCM/graphene-silver nanocomposite in a hybrid CPV/thermal solar system

    Get PDF
    In this research work, novel hybrid graphene-silver (Gr-Ag) nanomaterial has been used for first time with paraffin wax as a phase change material (PCM) to improve its thermo-physical properties. Thermal and electrical energy efficiencies of the novel synthesized nanocomposite (PCM/graphene-silver) has been investigated in solar thermal collector systems (CPV/T). This paper focuses on preparation, characterization, thermo-physical properties and energy efficiency in concentrated photovoltaic/thermal (CPV/T) system of new class of nanocomposites induced with hybrid Gr-Ag nanomaterial in three different concentrations. The specific heat capacity (cp) of hybrid PCM/graphene-silver nanocomposite increased by introducing hybrid Gr-Ag nanomaterial. Electrical and thermal energy performance of the hybrid PCM/graphene-silver is investigated in a CPV/T system using MATLAB 2017b program. The improvement of cp is found to be ~ 40% with 0.3 mass% of hybrid Gr-Ag nanomaterial loaded in PCM. The highest thermal conductivity increment is found to be ~ 11% at 0.3 mass% concentration of hybrid Gr-Ag nanomaterial in PCM. The endothermic enthalpy value of the hybrid PCM/graphene-silver nanocomposite is found to be ~ 75.6 J g−1 at 0.1 mass% loading concentration of hybrid Gr-Ag nanomaterial. Melting point of hybrid PCM/graphene-silver nanocomposite with loading concentration of 0.3 mass% is measured to be 73.2 °C. The highest thermal efficiency using the hybrid graphene-silver nanoparticles reached the value of 39.62% which represents 4.16% increment in comparison with the pure PCM. The equivalent electrical efficiency is improved by 2.8% at the loading concentration of 0.3 mass% of the hybrid Gr-Ag nanomaterial. These new class of nanocomposites represented the capability of enhancement in the performance of the CPV/T system consisting of lower PV temperatures, higher temperature gains across the cooling fluid and higher electrical and thermal efficiencies

    Investigation of the geometry modeling of metal organic halide vapor phase epitaxy (MOHVPE) reactor

    No full text
    The new approach for designing a horizontal metal organic halide vapor phase epitaxy(MOHVPE) reactor chamber is proposed. The model is conjugated with comprehensive detailed simulation for horizontal tube reaction chamber by using computerized software. The modeling approach is based on the hybridization of MOCVD and HVPE. The development consists of 5 inlet nozzles with dimension of 54 cm long. The numerical study of horizontal MOHVPE growth shows dependence on temperature and species flow rates. The inlet area is set to room temperature while the whole chamber is set in the temperature range from 1273 K to 1473 K. It is seen that the flow pattern is influenced more by the temperature distribution and geometry of the chamber

    Development of a Timetabling Software Using Soft-computing Techniques With a Case Study

    Get PDF
    Timetabling is the assigning of an event to a particular timeslot in a timetable. Timetabling becomes a problem when the assigning task becomes hard to be implied where certain specific requirements need to be fulfilled. Genetic Algorithm (GA) emerge as one automation timetabling method to solve timetabling problem by searching solution in multi-points and the ability to refine the existing solution to a better solution. The timetabling program is specifically designed and developed in MATLAB programming language based on simple GA method to solve the timetabling problem for the case study. The developed timetabling program hardly found a good timetable solution as the solution finding converges at one point. Result shows the simple GA is not applicable in timetabling problem with high constraints and limited free slots

    Electrodeposition of lead‐free solder alloys

    No full text
    Purpose – The purpose of this paper is to enhance the understanding on the electrodeposition of various lead (Pb)‐free solder alloys, so that new studies can be carried out to solve processing issues. Design/methodology/approach – The paper reviews the available reports on the electrodeposition of tin (Sn)‐based solder systems and identifies the challenges in this area. Findings – Compositional control remains a major challenge in this area, where the achievement of desired composition for binary and ternary alloys is subjected to uncertainties. The use of chelating agents in the bath and optimization of parameters can assist the achievement of near‐desired alloy composition. Acidic plating baths are preferred due to their compatibility with photoresists but oxidation of stannous ions causes poor bath stability. Antioxidants, reducing agents and low oxygen overpotential anodes can suppress the oxidation rate and increase the lifespan of plating baths. Apart from chelating agents and antioxidants, various categories of additives can be added to improve quality of deposits. Surfactants, grain refiners and brighteners are routinely used to obtain smooth, fine‐grained and bright deposits with good thermo‐mechanical properties. Originality/value – The paper provides information on the key issues in electrodeposition of Pb‐free solder alloys. Possible measures to alleviate the issues are suggested so that the electrodeposition technique can be established for mass production of a wider range of solder alloys

    Experimental investigation of thermal stability and enthalpy of eutectic alkali metal solar salt dispersed with MGO nanoparticles

    No full text
    In this study, nanocomposites containing a pre-defined mass ratio of solar salt (NaNO3-KNO3: 60-40 wt.%) dispersed with magnesium oxide (MgO) nanoparticles with nominal sizes of 100 nm were prepared in solid and liquid states. The proposed amounts of sodium nitrate and potassium nitrate were added to certain amounts of ultrapure deionized (DI) water comprising a 5 wt.% concentration of MgO nanoparticles. Afterward, the prepared mixture was placed in a dry oven to mix in a liquid state to obtain well-dispersed nanocomposites. Scanning electronic microscopy (SEM) was conducted to evaluate the uniformity of synthesized, molten salt–based magnesium oxide–nanoparticles, revealing a uniform dispersion. Enthalpy and melting point measurements were performed using differential scanning calorimetry. The experimental results of solar salt–based MgO indicated decreases in melting point and enthalpy by 7% and 12.4%, respectively. The reduction of enthalpy indicated that, with the addition of magnesium oxide to solar salt, the final nanocomposite tends to have more exothermic reactions and enhanced thermal conductivity performance at the melting point. Lower melting points constitute one of the major concerns regarding molten salt–based nanofluids. MgO nanoparticles with a concentration of 5 wt.% have a melting point decreased by 7%. Mass loss and thermal stability measurements were conducted using thermogravimetric analysis (TGA). The experimentally acquired results revealed an increment of decomposition temperature from 734.29°C to 750.73°C, demonstrating the enhancement of thermal stability at high temperatures
    corecore