2,090 research outputs found

    Relativistic Ring-Diagram Nuclear Matter Calculations

    Full text link
    A relativistic extension of the particle-particle hole-hole ring-diagram many-body formalism is developed by using the Dirac equation for single-particle motion in the medium. Applying this new formalism, calculations are performed for nuclear matter. The results show that the saturation density is improved and the equation of state becomes softer as compared to corresponding Dirac-Brueckner-Hartree-Fock calculations. Using the Bonn A potential, nuclear matter is predicted to saturate at an energy per nucleon of --15.30 MeV and a density equivalent to a Fermi momentum of 1.38 fm−1^{-1}, in excellent agreement with empirical information. The compression modulus is 152 MeV at the saturation point.Comment: 23 pages text (LaTex) and 2 figures (paper, will be faxed upon request), UI-NTH-92-0

    Target-searching on the percolation

    Full text link
    We study target-searching processes on a percolation, on which a hunter tracks a target by smelling odors it emits. The odor intensity is supposed to be inversely proportional to the distance it propagates. The Monte Carlo simulation is performed on a 2-dimensional bond-percolation above the threshold. Having no idea of the location of the target, the hunter determines its moves only by random attempts in each direction. For lager percolation connectivity p≳0.90p\gtrsim 0.90, it reveals a scaling law for the searching time versus the distance to the position of the target. The scaling exponent is dependent on the sensitivity of the hunter. For smaller pp, the scaling law is broken and the probability of finding out the target significantly reduces. The hunter seems trapped in the cluster of the percolation and can hardly reach the goal.Comment: 5 figure

    Temperature Monitoring for Quality Prediction and Inventory Control in Cold Chain: a Case of 18℃ Ready-to-eat Food in Taiwan

    Get PDF
    The aim of the study was the development of a quality prediction model combined with the incoming analysis for temperature control in 18 degree ready-to-eat food during logistics flows. And analyzed how temperature monitoring improves inventory decision. Base on the growth of Pseudomonas sp., the model was developed by mathematical model with Gompertz model. The model predicts for quality as well as shelf life in the monitoring temperature is about 19.5 h. On the other hand, the incoming analysis shows that the inventory quantities at 7 ℃ and 18 ℃ is more than at 25 ℃.The model can be considered to be an effective tool (in combination with temperature monitoring) for improvement of quality management with the incoming consideration. Moreover, our results suggest that temperature-controlled food companies could share temperature information with its chain partners which emphases a food quality and logistics cost balance in supply chain

    Lattice Boltzmann modeling of dendritic growth in forced and natural convection

    Get PDF
    AbstractA two-dimensional (2D) coupled model is developed for the simulation of dendritic growth during alloy solidification in the presence of forced and natural convection. Instead of conventional continuum-based Navier–Stokes (NS) solvers, the present model adopts a kinetic-based lattice Boltzmann method (LBM), which describes flow dynamics by the evolution of distribution functions of moving pseudo-particles, for the numerical computations of flow dynamics as well as thermal and solutal transport. The dendritic growth is modeled using a solutal equilibrium approach previously proposed by Zhu and Stefanescu (ZS), in which the evolution of the solid/liquid interface is driven by the difference between the local equilibrium composition and the local actual liquid composition. The local equilibrium composition is calculated from the local temperature and curvature. The local temperature and actual liquid composition, controlled by both diffusion and convection, are obtained by solving the LB equations using the lattice Bhatnagar–Gross–Krook (LBGK) scheme. Detailed model validation is performed by comparing the simulations with analytical predictions, which demonstrates the quantitative capability of the proposed model. Furthermore, the convective dendritic growth features predicted by the present model are compared with those obtained from the Zhu–Stefanescu and Navier–Stokes (ZS–NS) model, in which the fluid flow is calculated using an NS solver. It is found that the evolution of the solid fraction of dendritic growth calculated by both models coincides well. However, the present model has the significant advantages of numerical stability and computational efficiency for the simulation of dendritic growth with melt convection

    Statistics of level spacing of geometric resonances in random binary composites

    Full text link
    We study the statistics of level spacing of geometric resonances in the disordered binary networks. For a definite concentration pp within the interval [0.2,0.7][0.2,0.7], numerical calculations indicate that the unfolded level spacing distribution P(t)P(t) and level number variance Σ2(L)\Sigma^2(L) have the general features. It is also shown that the short-range fluctuation P(t)P(t) and long-range spectral correlation Σ2(L)\Sigma^2(L) lie between the profiles of the Poisson ensemble and Gaussion orthogonal ensemble (GOE). At the percolation threshold pcp_c, crossover behavior of functions P(t)P(t) and % \Sigma^2(L) is obtained, giving the finite size scaling of mean level spacing δ\delta and mean level number nn, which obey the scaling laws, % \delta=1.032 L ^{-1.952} and n=0.911L1.970n=0.911L^{1.970}.Comment: 11 pages, 7 figures,submitted to Phys. Rev.

    Single- and multi-walled carbon nanotubes viewed as elastic tubes with Young's moduli dependent on layer number

    Full text link
    The complete energy expression of a deformed single-walled carbon nanotube (SWNT) is derived in the continuum limit from the local density approximation model proposed by Lenosky {\it et al.} \lbrack Nature (London) {\bf 355}, 333 (1992)\rbrack and shows to be content with the classic shell theory by which the Young's modulus, the Poisson ratio and the effective wall thickness of SWNTs are obtained as Y=4.70Y=4.70TPa, ν=0.34\nu=0.34, h=0.75A˚h=0.75{\rm \AA}, respectively. The elasticity of a multi-walled carbon nanotube (MWNT) is investigated as the combination of the above SWNTs of layer distance d=3.4A˚d=3.4 {\rm \AA} and the Young's modulus of the MWNT is found to be an apparent function of the number of layers, NN, varying from 4.70TPa to 1.04TPa for N=1 to ∞\infty.Comment: 4 pages, 1 figur

    Analysis of the intraspinal calcium dynamics and its implications on the plasticity of spiking neurons

    Full text link
    The influx of calcium ions into the dendritic spines through the N-metyl-D-aspartate (NMDA) channels is believed to be the primary trigger for various forms of synaptic plasticity. In this paper, the authors calculate analytically the mean values of the calcium transients elicited by a spiking neuron undergoing a simple model of ionic currents and back-propagating action potentials. The relative variability of these transients, due to the stochastic nature of synaptic transmission, is further considered using a simple Markov model of NMDA receptos. One finds that both the mean value and the variability depend on the timing between pre- and postsynaptic action-potentials. These results could have implications on the expected form of synaptic-plasticity curve and can form a basis for a unified theory of spike time-dependent, and rate based plasticity.Comment: 14 pages, 10 figures. A few changes in section IV and addition of a new figur

    A Hybrid Artificial Bee Colony Algorithm for Graph 3-Coloring

    Full text link
    The Artificial Bee Colony (ABC) is the name of an optimization algorithm that was inspired by the intelligent behavior of a honey bee swarm. It is widely recognized as a quick, reliable, and efficient methods for solving optimization problems. This paper proposes a hybrid ABC (HABC) algorithm for graph 3-coloring, which is a well-known discrete optimization problem. The results of HABC are compared with results of the well-known graph coloring algorithms of today, i.e. the Tabucol and Hybrid Evolutionary algorithm (HEA) and results of the traditional evolutionary algorithm with SAW method (EA-SAW). Extensive experimentations has shown that the HABC matched the competitive results of the best graph coloring algorithms, and did better than the traditional heuristics EA-SAW when solving equi-partite, flat, and random generated medium-sized graphs

    Carrier induced ferromagnetism in diluted magnetic semi-conductors

    Full text link
    We present a theory for carrier induced ferromagnetism in diluted magnetic semi-conductor (DMS). Our approach treats on equal footing quantum fluctuations within the RPA approximation and disorder within CPA. This method allows for the calculation of TcT_c, magnetization and magnon spectrum as a function of hole, impurity concentration and temperature. It is shown that, sufficiently close to TcT_c, and within our decoupling scheme (Tyablicov type) the CPA for the itinerant electron gas reduces to the Virtual Crystal Approximation. This allows, in the low impurity concentration and low density of carriers to provide analytical expression for TcT_c. For illustration, we consider the case of Ga1−cMncAsGa_{1-c}Mn_{c}As and compare our results with available experimental data.Comment: 5 figures included. to appear in Phys. Rev. B (brief report

    Software Verification for Weak Memory via Program Transformation

    Get PDF
    Despite multiprocessors implementing weak memory models, verification methods often assume Sequential Consistency (SC), thus may miss bugs due to weak memory. We propose a sound transformation of the program to verify, enabling SC tools to perform verification w.r.t. weak memory. We present experiments for a broad variety of models (from x86/TSO to Power/ARM) and a vast range of verification tools, quantify the additional cost of the transformation and highlight the cases when we can drastically reduce it. Our benchmarks include work-queue management code from PostgreSQL
    • …
    corecore