1,308 research outputs found

    Eye-position dependence of torsional velocity during interaural translation, horizontal pursuit, and yaw-axis rotation in humans

    Get PDF
    AbstractThe translational vestibulo-ocular reflex (tVOR) stabilizes an image on the fovea during linear movements of the head. It has been suggested that the tVOR may share pathways with the pursuit system. We asked whether the tVOR and pursuit would be similar in their behavior relative to Listing’s Law. We compared torsional eye velocity as a function of vertical orbital position during interaural translation, pursuit, and yaw-axis rotation. We found that the eye-position-dependence of torsion was similar during translation and pursuit, which differed from that during yaw-axis rotation. These findings further support a close relationship between the mechanisms that generate pursuit and the tVOR

    Individual patient data meta-analysis of randomized controlled trials of community occupational therapy for stroke patients

    Get PDF
    <p><b>Background and Purpose:</b> Trials of occupational therapy for stroke patients living in the community have varied in their findings. It is unclear why these discrepancies have occurred.</p> <p><b>Methods:</b> Trials were identified from searches of the Cochrane Library and other sources. The primary outcome measure was the Nottingham Extended Activities of Daily Living (NEADL) score at the end of intervention. Secondary outcome measures included the Barthel Index or the Rivermead ADL (Personal ADL), General Health Questionnaire (GHQ), Nottingham Leisure Questionnaire (NLQ), and death. Data were analyzed using linear or logistic regression with a random effect for trial and adjustment for age, gender, baseline dependency, and method of follow-up. Subgroup analyses compared any occupational therapy intervention with control.</p> <p><b>Results:</b> We included 8 single-blind randomized controlled trials incorporating 1143 patients. Occupational therapy was associated with higher NEADL scores at the end of intervention (weighted mean difference [WMD], 1.30 points, 95% confidence intervals [CI], 0.47 to 2.13) and higher leisure scores at the end of intervention (WMD, 1.51 points; 95% CI, 0.24 to 2.79). Occupational therapy emphasizing activities of daily living (ADL) was associated with improved end of intervention NEADL (WMD, 1.61 points; 95% CI, 0.72 to 2.49) and personal activities of daily living (odds ratio [OR], 0.65; 95% CI, 0.46 to 0.91), but not NLQ. Leisure-based occupational therapy improved end of intervention NLQ (WMD, 1.96 points; 95% CI, 0.27 to 3.66) but not NEADL or PADL.</p> <p><b>Conclusions:</b> Community occupational therapy significantly improved personal and extended activities of daily living and leisure activity in patients with stroke. Better outcomes were found with targeted interventions.</p&gt

    Successful implementation of stroke early supported discharge services. Collaborative leadership in applied health research and care (CLAHRC), Nottinghamshire, Derbyshire and Lincolnshire, UK

    Get PDF
    A Cochrane systematic review demonstrated that ESD services can reduce long-term dependency and admission to institutional care as well as reducing the length of hospital stay. No adverse impact on the mood or well-being of patients or carers was reported. This ongoing study aims to facilitate and evaluate the successful implementation of Stroke Early Supported Discharge (ESD) services across Nottinghamshire, Derbyshire and Lincolnshire, UK. This study is being conducted to ensure that the health and cost benefits are still in evidence when ESD services are implemented into local areas

    Extended Gari-Krumpelmann model fits to nucleon electromagnetic form factors

    Get PDF
    Nucleon electromagnetic form factor data (including recent data) is fitted with models that respect the confinement and asymptotic freedom properties of QCD. Gari-Krumpelmann (GK) type models, which include the major vector meson pole contributions and at high momentum transfer conform to the predictions of perturbative QCD, are combined with Hohler-Pietarinen (HP) models, which also include the width of the rho meson and the addition of higher mass vector meson exchanges, but do not evolve into the explicit form of PQCD at high momentum transfer. Different parameterizations of the GK model's hadronic form factors, the effect of including the width of the rho meson and the addition of the next (in mass) isospin 1 vector meson are considered. The quality of fit and the consistency of the parameters select three of the combined HP/GK type models. Projections are made to the higher momentum transfers which are relevant to electron-deuteron experiments. The projections vary little for the preferred models, removing much of the ambiguity in electron-nucleus scattering predictions.Comment: 18pp, 7 figures, using RevTeX with BoxedEPS macros; 1 new figure, minor textual changes; email correspondence to [email protected]

    Effect of recent R_p and R_n measurements on extended Gari-Krumpelmann model fits to nucleon electromagnetic form factors

    Full text link
    The Gari-Krumpelmann (GK) models of nucleon electromagnetic form factors, in which the rho, omega, and phi vector meson pole contributions evolve at high momentum transfer to conform to the predictions of perturbative QCD (pQCD), was recently extended to include the width of the rho meson by substituting the result of dispersion relations for the pole and the addition of rho' (1450) isovector vector meson pole. This extended model was shown to produce a good overall fit to all the available nucleon electromagnetic form factor (emff) data. Since then new polarization data shows that the electric to magnetic ratios R_p and R_n obtained are not consistent with the older G_{Ep} and G_{En} data in their range of momentum transfer. The model is further extended to include the omega' (1419) isoscalar vector meson pole. It is found that while this GKex cannot simultaneously fit the new R_p and the old G_{En} data, it can fit the new R_p and R_n well simultaneously. An excellent fit to all the remaining data is obtained when the inconsistent G_{Ep} and G_{En} is omitted. The model predictions are shown up to momentum transfer squared, Q^2, of 8 GeV^2/c^2.Comment: 14 pages, 8 figures, using RevTeX4; email correspondence to [email protected] ; minor typos corrected, figures added, conclusions extende

    The structure and dynamics of young star clusters: King 16, NGC 1931, NGC 637 and NGC 189

    Full text link
    In this paper, using 2MASS photometry, we study the structural and dynamical properties of four young star clusters viz. King 16, NGC 1931, NGC 637 and NGC 189. For the clusters King 16, NGC 1931, NGC 637 and NGC 189, we obtain the limiting radii of 7', 12', 6' and 5' which correspond to linear radii of 3.6 pc, 8.85 pc, 3.96 pc and 2.8 pc respectively. The reddening values E(BV)E(B-V) obtained for the clusters are 0.85, 0.65--0.85, 0.6 and 0.53 and their true distances are 1786 pc, 3062 pc, 2270 pc and 912 pc respectively. Ages of the clusters are 6 Myr, 4 Myr, 4 Myr and 10 Myr respectively. We compare their structures, luminosity functions and mass functions (ϕ(M)=dN/dMM(1+χ)\phi(M) = dN/dM \propto M^{-(1+\chi)}) to the parameter τ=tage/trelax\tau = t_{age}/t_{relax} to study the star formation process and the dynamical evolution of these clusters. We find that, for our sample, mass seggregation is observed in clusters or their cores only when the ages of the clusters are comparable to their relaxation times (τ1\tau \geq 1). These results suggest mass seggregation due to dynamical effects. The values of χ\chi, which characterise the overall mass functions for the clusters are 0.96 ±\pm 0.11, 1.16 ±\pm 0.18, 0.55 ±\pm 0.14 and 0.66 ±\pm 0.31 respectively. The change in χ\chi as a function of radius is a good indicator of the dynamical state of clusters.Comment: Accepted for publication in Astrophysics & Space Scienc

    Nucleon Charge and Magnetization Densities from Sachs Form Factors

    Full text link
    Relativistic prescriptions relating Sachs form factors to nucleon charge and magnetization densities are used to fit recent data for both the proton and the neutron. The analysis uses expansions in complete radial bases to minimize model dependence and to estimate the uncertainties in radial densities due to limitation of the range of momentum transfer. We find that the charge distribution for the proton is significantly broad than its magnetization density and that the magnetization density is slightly broader for the neutron than the proton. The neutron charge form factor is consistent with the Galster parametrization over the available range of Q^2, but relativistic inversion produces a softer radial density. Discrete ambiguities in the inversion method are analyzed in detail. The method of Mitra and Kumari ensures compatibility with pQCD and is most useful for extrapolating form factors to large Q^2.Comment: To appear in Phys. Rev. C. Two new figures and accompanying text have been added and several discussions have been clarified with no significant changes to the conclusions. Now contains 47 pages including 21 figures and 2 table

    Measuring the elements of the optical density matrix

    Get PDF
    Most methods for experimentally reconstructing the quantum state of light involve determining a quasiprobability distribution such as the Wigner function. In this paper we present a scheme for measuring individual density matrix elements in the photon number state representation. Remarkably, the scheme is simple, involving two beam splitters and a reference field in a coherent state.Comment: 6 pages and 1 figur

    Opto-mechanical measurement of micro-trap via nonlinear cavity enhanced Raman scattering spectrum

    Full text link
    High-gain resonant nonlinear Raman scattering on trapped cold atoms within a high-fineness ring optical cavity is simply explained under a nonlinear opto-mechanical mechanism, and a proposal using it to detect frequency of micro-trap on atom chip is presented. The enhancement of scattering spectrum is due to a coherent Raman conversion between two different cavity modes mediated by collective vibrations of atoms through nonlinear opto-mechanical couplings. The physical conditions of this technique are roughly estimated on Rubidium atoms, and a simple quantum analysis as well as a multi-body semiclassical simulation on this nonlinear Raman process is conducted.Comment: 7 pages, 2 figure

    Development and validation of a computational model of the knee joint for the evaluation of surgical treatments for osteoarthritis

    Get PDF
    A three-dimensional (3D) knee joint computational model was developed and validated to predict knee joint contact forces and pressures for different degrees of malalignment. A 3D computational knee model was created from high-resolution radiological images to emulate passive sagittal rotation (full-extension to 658-flexion) and weight acceptance. A cadaveric knee mounted on a six-degree-of-freedom robot was subjected to matching boundary and loading conditions. A ligamenttuning process minimised kinematic differences between the robotically loaded cadaver specimen and the finite element (FE) model. The model was validated by measured intra-articular force and pressure measurements. Percent full scale error between FE-predicted and in vitro-measured values in the medial and lateral compartments were 6.67% and 5.94%, respectively, for normalised peak pressure values, and 7.56% and 4.48%, respectively, for normalised force values. The knee model can accurately predict normalised intra-articular pressure and forces for different loading conditions and could be further developed for subject-specific surgical planning
    corecore