7 research outputs found

    Sleep and vigilance linked to melanism in wild barn owls.

    Get PDF
    Understanding the function of variation in sleep requires studies in the natural ecological conditions in which sleep evolved. Sleep has an impact on individual performance and hence may integrate the costs and benefits of investing in processes that are sensitive to sleep, such as immunity or coping with stress. Because dark and pale melanic animals differentially regulate energy homeostasis, immunity and stress hormone levels, the amount and/or organization of sleep may covary with melanin-based colour. We show here that wild, cross-fostered nestling barn owls (Tyto alba) born from mothers displaying more black spots had shorter non-REM (rapid eye movement) sleep bouts, a shorter latency until the occurrence of REM sleep after a bout of wakefulness and more wakefulness bouts. In male nestlings, the same sleep traits also correlated with their own level of spotting. Because heavily spotted male nestlings and the offspring of heavily spotted biological mothers switched sleep-wakefulness states more frequently, we propose the hypothesis that they could be also behaviourally more vigilant. Accordingly, nestlings from mothers displaying many black spots looked more often towards the nest entrance where their parents bring food and towards their sibling against whom they compete. Owlets from heavily spotted mothers might invest more in vigilance, thereby possibly increasing associated costs due to sleep fragmentation. We conclude that different strategies of the regulation of brain activity have evolved and are correlated with melanin-based coloration

    Linking melanism to brain development: expression of a melanism-related gene in barn owl feather follicles covaries with sleep ontogeny.

    Get PDF
    BACKGROUND: Intra-specific variation in melanocyte pigmentation, common in the animal kingdom, has caught the eye of naturalists and biologists for centuries. In vertebrates, dark, eumelanin pigmentation is often genetically determined and associated with various behavioral and physiological traits, suggesting that the genes involved in melanism have far reaching pleiotropic effects. The mechanisms linking these traits remain poorly understood, and the potential involvement of developmental processes occurring in the brain early in life has not been investigated. We examined the ontogeny of rapid eye movement (REM) sleep, a state involved in brain development, in a wild population of barn owls (Tyto alba) exhibiting inter-individual variation in melanism and covarying traits. In addition to sleep, we measured melanistic feather spots and the expression of a gene in the feather follicles implicated in melanism (PCSK2). RESULTS: As in mammals, REM sleep declined with age across a period of brain development in owlets. In addition, inter-individual variation in REM sleep around this developmental trajectory was predicted by variation in PCSK2 expression in the feather follicles, with individuals expressing higher levels exhibiting a more precocial pattern characterized by less REM sleep. Finally, PCSK2 expression was positively correlated with feather spotting. CONCLUSIONS: We demonstrate that the pace of brain development, as reflected in age-related changes in REM sleep, covaries with the peripheral activation of the melanocortin system. Given its role in brain development, variation in nestling REM sleep may lead to variation in adult brain organization, and thereby contribute to the behavioral and physiological differences observed between adults expressing different degrees of melanism

    Melanism is related to behavioural lateralization in nestling barn owls.

    No full text
    Behavioural laterality is a commonly observed phenomenon in many species suggesting there might be an advantage of using dominantly one side over the other for certain tasks. Indeed, lateralized individuals were often shown to be more successful in cognitive tasks compared to non-lateralized conspecifics. However, stressed individuals are also often, but not always, more strongly lateralized. Because barn owl (Tyto alba) females displaying larger black spots on the tip of their ventral feathers produce offspring that are more resistant to a variety of environmental stressful factors, we examined whether laterality is associated with melanin-based coloration. We recorded whether nestlings use more often the right or left foot to scratch their body and whether they preen more often one side of the body or the other using their bills. We found that the strength of lateralization of preening and scratching was less pronounced in individuals born from heavily spotted mothers. This result might be explained by plumage-related variation in the ability to resist stressful rearing conditions

    Ultradian Rhythmicity in Sleep-Wakefulness Is Related to Color in Nestling Barn Owls.

    No full text
    The possession of a rhythm is usually described as an important adaptation to regular changing environmental conditions such as the light-dark cycle. However, recent studies have suggested plasticity in the expression of a rhythm depending on life history and environmental factors. Barn owl ( Tyto alba) nestlings show variations in behavior and physiology in relation to the size of black feather spots, a trait associated with many behavioral and physiological phenotypes including the circadian expression of corticosterone and the regulation of body mass. This raises the possibility that individual spottiness could be associated with rhythmicity in sleep-wakefulness. Owlets showed ultradian rhythms in sleep-wakefulness, with a period length of 4.5 to 4.9 h. The period length of wakefulness and non-REM sleep was shorter in heavily compared to lightly spotted female nestlings, whereas in males, the opposite result was found. Furthermore, male and female nestlings displaying small black spots showed strong rhythmicity levels in wakefulness and REM sleep. This might be an advantage in a stable environment with predictable periodic changes in light, temperature, or social interactions. Heavily spotted nestlings displayed weak rhythms in wakefulness and REM sleep, which might enable them to be more flexible in reactions to unexpected events such as predation or might be a mechanism to save energy. These findings are consistent with previous findings showing that large-spotted nestlings switch more frequently between wakefulness and sleep, resulting in higher levels of vigilance compared to small-spotted conspecifics. Thus, nestlings with larger black feather spots might differently handle the trade-off between wakefulness and sleep, attention, and social interactions compared to nestlings with smaller black spots

    Nocturnal, diurnal and bimodal patterns of locomotion, sibling interactions and sleep in nestling Barn Owls

    No full text
    Temporal variation in physical activity is mainly determined by the day-night cycle. While this may be true for diurnal species whose vision at night is often poor, the situation might be more complex in nocturnal animals as many such species can see both in the dark and in the daylight. We examined in Barn Owl (Tyto alba) nestlings whether temporal variation of behavioural activities and sleep is shaped by parental feeding visits occurring during the first part of the night and the extent to which they also occur during daylight hours. We measured several behaviours in 280 individuals from 90 broods recorded in 4 years. Parental feeding visits progressively declined in frequency from the beginning to the end of the night, and a number of offspring behaviours followed the same pattern of activity (feeding, vocalization and self-preening). Surprisingly, nestlings were awake not only at sunset, but also at sunrise. Several behaviours (locomotion, wing flapping and sibling interactions, such as pecking and allopreening among nestlings) showed peaks of activity at sunset and sunrise, suggesting that they were performed for other reasons than to interact with parents. Allopreening was performed more often during the day than at night. We conclude that although adult Barn Owls are nocturnal, nestlings display a complex temporal pattern of activity that is governed not only by feeding but also by other unknown factors
    corecore