42 research outputs found

    Microwave heating as a novel route for obtaining carbon precursors from anthracene oil

    Get PDF
    This work describes a novel route for the preparation of pitches by oxidative polymerization of an industrial anthracene oil (AO) in a microwave semi-pilot equipment consisting in a multimode applicator having a 2.45 GHz magnetron with variable microwave power. The experimental five variables of microwave heating of AO air-blowing range between 320-380 ˚C (temperature), 0.2 - 3.9 ˚C min-1 (heating rate), 1.5 - 5 h (soaking time), 16 – 20.5 % (air/AO ratio ) and 200 – 1500 g (initial weight). Their effect on the overall microwave air-blowing process is evaluated by means of a statistical analysis. A detailed characterization of the pitches has been carried out in terms of ultimate analysis, softening point, solubility parameters (toluene insolubles (TI) and quinoline insolubles (QI)) and thermogravimetric analysis. The experiments were also carried out by using conventional heating for comparative purposes. The detailed study of the electric energy consumption of the overall microwave treatment allows estimating a significant electric energy saving of about 20 % when compared to conventional heating thus representing an excellent result in the production of carbon precursors

    Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Background: In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation <92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg–800 mg (depending on weight) given intravenously. A second dose could be given 12–24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936). Findings: Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21 550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0·85; 95% CI 0·76–0·94; p=0·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1·22; 1·12–1·33; p<0·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0·84; 95% CI 0·77–0·92; p<0·0001). Interpretation: In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Infrared spectroscopy of leaf traits : Detecting plant stress and identifying plant species

    No full text

    Connecting infrared spectra with plant traits to identify species : abstract + powerpoint

    No full text
    Plant traits are used to define species, but also to evaluate the health status of forests, plantations and crops. Conventional methods of measuring plant traits (e.g. wet chemistry), although accurate, are inefficient and costly when applied over large areas or with intensive sampling. Spectroscopic methods, as used in the food industry and mineralogy, are nowadays applied to identify plant traits, however, most studies analysed visible to near infrared, while infrared spectra of longer wavelengths have been little used for identifying the spectral differences between plant species. This study measured the infrared spectra (1.4–16.0 mm) on individual, fresh leaves of 19 species (from herbaceous to woody species), as well as 14 leaf traits for each leaf. The results describe at which wavelengths in the infrared the leaves’ spectra can differentiate most effectively between these plant species. A Quadratic Discrimination Analysis (QDA) shows that using five bands in the SWIR or the LWIR is enough to accurately differentiate these species (Kappa: 0.93, 0.94 respectively), while the MWIR has a lower classification accuracy (Kappa: 0.84). This study also shows that in the infrared spectra of fresh leaves, the identified speciesspecific features are correlated with leaf traits as well as changes in their values. Spectral features in the SWIR (1.66, 1.89 and 2.00 mm) are common to all species and match the main features of pure cellulose and lignin spectra. The depth of these features varies with changes of cellulose and leaf water content and can be used to differentiate species in this region. In the MWIR and LWIR, the absorption spectra of leaves are formed by key species-specific traits including lignin, cellulose, water, nitrogen and leaf thickness. The connection found in this study between leaf traits, features and spectral signatures are novel tools to assist when identifying plant species by spectroscopy and remote sensing

    Auto-correcting for atmospheric effects in thermal hyperspectral measurements

    Get PDF
    Correct estimation of soil and vegetation thermal emissivities is of huge importance in remote sensing studies. It has been shown that the emissivity of leaves retrieved from field observations show subtle spectral features that are related to leaf water content. However, such field measurements provide additional challenges before leaf water content can be successfully obtained, specifically atmospheric correction. The aim of this research was to investigate how information within hyperspectral thermal observations can be used to auto-correct the atmospheric influence. Hyperspectral thermal measurements were taken over a large variety of soil and vegetation types (including vineyard and barley) during ESA’s REFLEX campaign in 2012 using a MIDAC FTIR radiometer. Using MODTRAN simulations, a simple quadratic model was constructed that emulates the atmosphere radiative transfer between the target and the sensor. Afterwards, this model was used to estimate the concentrations of H20 (g) and CO2 (g) while simultaneously correcting for these gas absorptions. Finally, a temperature-emissivity separation was applied to estimate the emissivities of the different land surface components. The uncertainty of the approach was evaluated by comparing the retrieved gas concentrations against parallel measurements of a LICOR 7500. It was found that most measurements of gas concentrations were successfully retrieved, with uncertainties lower than 25%. However, absolute correction of the absorption features proved more difficult and resulted in overestimations of the correction-terms. This was mainly due to overlapping of spectral features with the observations in the simulations that proved troublesome

    Detecting temperature and water stress in plants with Thermal Infrared Spectroscopy : abstract + powerpoint

    No full text
    Stress in plants generates changes in leaves from decreasing water content to changes in the microstructure and the internal composition of the leave, and changes in the structure of the whole community. Although physiological changes such as water content, relocalization of micro molecules, and macro structural changes such as smaller leaves and canopies are known, the effect of these changes on the thermal properties of plants, and the spectral detection by remote sensors has not been demonstrated yet. This research shows the results of a series of laboratory experiments with an FTIR system (Bruker Vertex70) as a proxy for the remote detection of plant stress in a deciduous and an evergreen species (European beech Fagus sylvatica and Rhododendron Rhododendron sp.) in the Thermal Infrared (TIR). Four groups of fifteen plants each were separated and treated with cold and warm temperatures (±10°C and 20°C), and poor and well watered conditions. Five leaves of each plant were measured with the FTIR at the beginning and re-measured three months later. These preliminary results show that plants exposed to water and temperature stress have different thermal spectra compared to plants with optimal growing conditions for several sections of the thermal Infrared. Plants under limited water regime showed lower emissivity in regions related to water content (4-6um), but also at longer wavelengths probably associated with adaptations leaf structural traits. Furthermore the evergreen plants (Rhododendron sp.) showed less effect to water stress compared to the deciduous plants (Fagus sp.), suggesting that Rhododendron sp. has more intrinsic resilience to extreme growing conditions
    corecore