52 research outputs found

    Herd-level risk factors associated with the presence of Phage type 21/28 E. coli O157 on Scottish cattle farms

    Get PDF
    <p>Background: E. coli O157 is a bacterial pathogen that is shed by cattle and can cause severe disease in humans. Phage type (PT) 21/28 is a subtype of E. coli O157 that is found across Scotland and is associated with particularly severe human morbidity.</p> <p>Methods: A cross-sectional survey of Scottish cattle farms was conducted in the period Feb 2002-Feb 2004 to determine the prevalence of E. coli O157 in cattle herds. Data from 88 farms on which E. coli O157 was present were analysed using generalised linear mixed models to identify risk factors for the presence of PT 21/28 specifically.</p> <p>Results: The analysis identified private water supply, and northerly farm location as risk factors for PT 21/28 presence. There was a significant association between the presence of PT 21/28 and an increased number of E. coli O157 positive pat samples from a farm, and PT 21/28 was significantly associated with larger E. coli O157 counts than non-PT 21/28 E. coli O157.</p> <p>Conclusion: PT 21/28 has significant risk factors that distinguish it from other phage types of E. coli O157. This finding has implications for the control of E. coli O157 as a whole and suggests that control could be tailored to target the locally dominant PT.</p&gt

    Pathogenic Potential to Humans of Bovine Escherichia coli O26, Scotland

    Get PDF
    Escherichia coli O26 and O157 have similar overall prevalences in cattle in Scotland, but in humans, Shiga toxin–producing E. coli O26 infections are fewer and clinically less severe than E. coli O157 infections. To investigate this discrepancy, we genotyped E. coli O26 isolates from cattle and humans in Scotland and continental Europe. The genetic background of some strains from Scotland was closely related to that of strains causing severe infections in Europe. Nonmetric multidimensional scaling found an association between hemolytic uremic syndrome (HUS) and multilocus sequence type 21 strains and confirmed the role of stx<sub>2</sub> in severe human disease. Although the prevalences of E. coli O26 and O157 on cattle farms in Scotland are equivalent, prevalence of more virulent strains is low, reducing human infection risk. However, new data on E. coli O26–associated HUS in humans highlight the need for surveillance of non-O157 enterohemorrhagic E. coli and for understanding stx<sub>2</sub> phage acquisition

    Reflections on IDEAL: What we have learnt from a unique calf cohort study

    Get PDF
    The year 2020 marks a decade since the final visit was made in the ‘Infectious Diseases of East African Livestock’ (IDEAL) project. However, data generation from samples obtained during this ambitious longitudinal study still continues. As the project launches its extensive open-access database and biobank to the scientific community, we reflect on the challenges overcome, the knowledge gained, and the advantages of such a project. We discuss the legacy of the IDEAL project and how it continues to generate evidence since being adopted by the Centre for Tropical Livestock Genetics and Health (CTLGH). We also examine the impact of the IDEAL project, from the authors perspective, for each of the stakeholders (the animal, the farmer, the consumer, the policy maker, the funding body, and the researcher and their institution) involved in the project and provide recommendations for future researchers who are interested in running longitudinal field studies.The Bill & Melinda Gates Foundation, the UK Government’s Department for International Development and the International Livestock Research Institute.http://www.elsevier.com/locate/prevetmedam2021Veterinary Tropical Disease

    Bluetongue and Epizootic Haemorrhagic Disease virus in local breeds of cattle in Kenya

    Get PDF
    AbstractThe presence of bluetongue virus (BTV) and Epizootic Haemorrhagic Disease virus (EHDV) in indigenous calves in western Kenya was investigated. Serum was analysed for BTV and EHDV antibodies. The population seroprevalences for BTV and EHDV for calves at 51weeks of age were estimated to be 0.942 (95% CI 0.902–0.970) and 0.637 (95% CI 0.562–0.710), respectively, indicating high levels of circulating BTV and EHDV. The odds ratio of being positive for BTV if EHDV positive was estimated to be 2.57 (95% CI 1.37–4.76). When 99 calves were tested for BTV and EHDV RNA by real-time RT-PCR, 88.9% and 63.6% were positive, respectively. Comparison of the serology and real-time RT-PCR results revealed an unexpectedly large number of calves that were negative by serology but positive by real-time RT-PCR for EHDV. Eight samples positive for BTV RNA were serotyped using 24 serotype-specific real-time RT-PCR assays. Nine BTV serotypes were detected, indicating that the cattle were infected with a heterogeneous population of BTVs. The results show that BTV and EHDV are highly prevalent, with cattle being infected from an early age

    Animal helminths in human archaeological remains: a review of zoonoses in the past

    Full text link

    New approaches to quantifying the spread of infection

    No full text
    Recent major disease outbreaks, such as severe acute respiratory syndrome and foot-and-mouth disease in the UK, coupled with fears of emergence of human-to-human transmissible variants of avian influenza, have highlighted the importance of accurate quantification of disease threat when relatively few cases have occurred. Traditional approaches to mathematical modelling of infectious diseases deal most effectively with large outbreaks in large populations. The desire to elucidate the highly variable dynamics of disease spread amongst small numbers of individuals has fuelled the development of models that depend more directly on surveillance and contact-tracing data. This signals a move towards a closer interplay between epidemiological modelling, surveillance and disease-management strategies
    • …
    corecore